[1] DEVARBHAVI H, ASRANI S K, ARAB J P, et al. Global burden of liver disease: 2023 update [J]. J Hepatol, 2023, 79(2): 516-537.
[2] PARK S H, KIM D J. Global and regional impacts of alcohol use on public health: emphasis on alcohol policies [J]. Clin Mol Hepatol, 2020, 26(4): 652-661.
[3] XIAO J, WANG F, WONG N K, et al. Global liver disease burdens and research trends: analysis from a Chinese perspective [J]. J Hepatol, 2019, 71(1): 212-221.
[4] LÓPEZ-OTÍN C, BLASCO M A, PARTRIDGE L, et al. Hallmarks of aging: an expanding universe [J]. Cell, 2023, 186(2): 243-278.
[5] YOUSEFZADEH M J, FLORES R R, ZHU Y, et al. An aged immune system drives senescence and ageing of solid organs [J]. Nature, 2021, 594(7861): 100-105.
[6] FRASCA D, BLOMBERG B B. Aging affects human B cell responses [J]. J Clin Immunol, 2011, 31(3): 430-435.
[7] LEE N, SHIN M S, KANG I. T-cell biology in aging, with a focus on lung disease [J]. J Gerontol A Biol Sci Med Sci, 2012, 67(3): 254-263.
[8] CERUTTI A, PUGA I, MAGRI G. The B cell helper side of neutrophils [J]. J Leukoc Biol, 2013, 94(4): 677-682.
[9] JACKAMAN C, TOMAY F, DUONG L, et al. Aging and cancer: the role of macrophages and neutrophils [J]. Ageing Res Rev, 2017, 36: 105-116.
[10] GUILLOT A, TACKE F. Spatial dimension of macrophage heterogeneity in liver diseases [J]. eGastroenterology, 2023, 1(1): e000003.
[11] BINATTI E, GERUSSI A, BARISANI D, et al. The role of macrophages in liver fibrosis: new therapeutic opportunities [J]. Int J Mol Sci, 2022, 23(12): 6649.
[12] SAQIB U, SARKAR S, SUK K, et al. Phytochemicals as modulators of M1-M2 macrophages in inflammation [J]. Oncotarget, 2018, 9(25): 17937-17950.
[13] STRANKS A J, HANSEN A L, PANSE I, et al. Autophagy controls acquisition of aging features in macrophages [J]. J Innate Immun, 2015, 7(4): 375-391.
[14] LODDER J, DENAËS T, CHOBERT M N, et al. Macrophage autophagy protects against liver fibrosis in mice [J]. Autophagy, 2015, 11(8): 1280-1292.
[15] OU-YANG P, CAI Z Y, ZHANG Z H. Molecular regulation mechanism of microglial autophagy in the pathology of Alzheimer’s disease [J]. Aging Dis, 2023, 14(4): 1166-1177.
[16] KHALIL H, TAZI M, CAUTION K, et al. Aging is associated with hypermethylation of autophagy genes in macrophages [J]. Epigenetics, 2016, 11(5): 381-388.
[17] STAHL E C, HASCHAK M J, POPOVIC B, et al. Macrophages in the aging liver and age-related liver disease [J]. Front Immunol, 2018, 9: 2795.
[18] WONG C K, SMITH C A, SAKAMOTO K, et al. Aging impairs alveolar macrophage phagocytosis and increases influenza-induced mortality in mice [J]. J Immunol, 2017, 199(3): 1060-1068.
[19] DAVILA D R, EDWARDS C K III, ARKINS S, et al. Interferon- γ-induced priming for secretion of superoxide anion and tumor necrosis factor-α declines in macrophages from aged rats [J]. FASEB J, 1990, 4(11): 2906-2911.
[20] VĚTVIČKA V, TLASKALOVÁ-HOGENOVÉ A, POSPIŠIL M. Impaired antigen presenting function of macrophages from aged mice [J]. Immunol Investig, 1985, 14(2): 105-114.
[21] PLOWDEN J, RENSHAW-HOELSCHER M, GANGAPPA S, et al. Impaired antigen-induced CD8+ T cell clonal expansion in aging is due to defects in antigen presenting cell function [J]. Cell Immunol, 2004, 229(2): 86-92.
[22] BLOOMER S A, MOYER E D, BROWN K E, et al. Aging results in accumulation of M1 and M2 hepatic macrophages and a differential response to gadolinium chloride [J]. Histochem Cell Biol, 2020, 153(1): 37-48.
[23] HEFENDEHL J K, NEHER J J, SÜHS R B, et al. Homeostatic and injury-induced microglia behavior in the aging brain [J]. Aging Cell, 2014, 13(1): 60-69.
[24] CLARK D, BRAZINA S, YANG F, et al. Age-related changes to macrophages are detrimental to fracture healing in mice [J]. Aging Cell, 2020, 19(3): e13112.
[25] NAKAMURA R, SENE A, SANTEFORD A, et al. IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis [J]. Nat Commun, 2015, 6: 7847.
[26] ALMANZAR N, ANTONY J, BAGHEL A S, et al. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse [J]. Nature, 2020, 583(7817): 590-595.
[27] GATHER L, NATH N, FALCKENHAYN C, et al. Macrophages are polarized toward an inflammatory phenotype by their aged microenvironment in the human skin [J]. J Investig Dermatol, 2022, 142(12): 3136-3145.e11.
[28] INOMATA M, XU S, CHANDRA P, et al. Macrophage LC3-associated phagocytosis is an immune defense against Streptococcus pneumoniae that diminishes with host aging [J]. Proc Natl Acad Sci USA, 2020, 117(52): 33561-33569.
[29] SONDELL K, ATHLIN L, BJERMER L, et al. The role of sex and age in yeast cell phagocytosis by monocytes from healthy blood donors [J]. Mech Ageing Dev, 1990, 51(1): 55-61.
[30] HILMER S N, COGGER V C, LE COUTEUR D G. Basal activity of Kupffer cells increases with old age [J]. J Gerontol A Biol Sci Med Sci, 2007, 62(9): 973-978.
[31] LI X, LI C, ZHANG W, et al. Inflammation and aging: signaling pathways and intervention therapies [J]. Sig Transduct Target Ther, 2023, 8: 239.
[32] MINHAS P S, LATIF-HERNANDEZ A, MCREYNOLDS M R, et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing [J]. Nature, 2021, 590(7844): 122-128.
[33] ROY A L, SIERRA F, HOWCROFT K, et al. A blueprint for characterizing senescence [J]. Cell, 2020, 183(5): 1143-1146.
[34] BLACHER E, TSAI C, LITICHEVSKIY L, et al. Aging disrupts circadian gene regulation and function in macrophages [J]. Nat Immunol, 2022, 23(2): 229-236.
[35] VAN DER HEIDE D, WEISKIRCHEN R, BANSAL R. Therapeutic targeting of hepatic macrophages for the treatment of liver diseases [J]. Front Immunol, 2019, 10: 2852.
[36] ZHONG W, RAO Z, XU J, et al. Defective mitophagy in aged macrophages promotes mitochondrial DNA cytosolic leakage to activate STING signaling during liver sterile inflammation [J]. Aging Cell, 2022, 21(6): e13622.
[37] HOPFNER K P, HORNUNG V. Molecular mechanisms and cellular functions of cGAS-STING signalling [J]. Nat Rev Mol Cell Biol, 2020, 21(9): 501-521.
[38] HU H, CHENG X, LI F, et al. Defective efferocytosis by aged macrophages promotes STING signaling mediated inflammatory liver injury [J]. Cell Death Discov, 2023, 9(1): 236.
[39] ZHONG W, RAO Z, RAO J, et al. Aging aggravated liver ischemia and reperfusion injury by promoting STING-mediated NLRP3 activation in macrophages [J]. Aging Cell, 2020, 19(8): e13186.
[40] LIU R, XU W, ZHU H, et al. Aging aggravates acetaminophen-induced acute liver injury and inflammation through inordinate C/ EBPα-BMP9 crosstalk [J]. Cell Biosci, 2023, 13(1): 61.
[41] LIU R, CUI J, SUN Y, et al. Autophagy deficiency promotes M1 macrophage polarization to exacerbate acute liver injury via ATG5 repression during aging [J]. Cell Death Discov, 2021, 7(1): 397.
[42] CHEN Q, SONG Y, YANG N, et al. Aging deteriorated liver ischemia and reperfusion injury by suppressing Tribble’s proteins 1 mediated macrophage polarization [J]. Bioengineered, 2022, 13(6): 14519-14533.
[43] WAN J, BENKDANE M, TEIXEIRA-CLERC F, et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease [J]. Hepatology, 2014, 59(1): 130-142.
[44] FONTANA L, ZHAO E, AMIR M, et al. Aging promotes the development of diet-induced murine steatohepatitis but not steatosis [J]. Hepatology, 2013, 57(3): 995-1004.
[45] TSUGAWA H, OHKI T, TSUBAKI S, et al. Gas6 ameliorates intestinal mucosal immunosenescence to prevent the translocation of a gut pathobiont, Klebsiella pneumoniae, to the liver [J]. PLoS Pathog, 2023, 19(6): e1011139.
[46] ROEHLEN N, CROUCHET E, BAUMERT T F. Liver fibrosis: mechanistic concepts and therapeutic perspectives [J]. Cell, 2020, 9(4): 875.
[47] ZHANG D, ZHANG Y, SUN B. The molecular mechanisms of liver fibrosis and its potential therapy in application [J]. Int J Mol Sci, 2022, 23(20): 12572.
[48] YANG F, LI H, LI Y, et al. Crosstalk between hepatic stellate cells and surrounding cells in hepatic fibrosis [J]. Int Immunopharmacol, 2021, 99: 108051.
[49] HIGASHI T, FRIEDMAN S L, HOSHIDA Y. Hepatic stellate cells as key target in liver fibrosis [J]. Adv Drug Deliv Rev, 2017, 121: 27-42.
[50] FRIEDMAN S L, PINZANI M. Hepatic fibrosis 2022: Unmet needs and a blueprint for the future [J]. Hepatology, 2022, 75(2): 473-488.
[51] KISSELEVA T, BRENNER D. Molecular and cellular mechanisms of liver fibrosis and its regression [J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 151-166.
[52] TSUCHIDA T, FRIEDMAN S L. Mechanisms of hepatic stellate cell activation [J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411.
[53] AGING BIOMARKER C, BAO H, CAO J, et al. Biomarkers of aging [J]. Sci China Life Sci, 2023, 66(5): 893-1066.
[54] SU L, DONG Y, WANG Y, et al. Potential role of senescent macrophages in radiation-induced pulmonary fibrosis [J]. Cell Death Dis, 2021, 12(6): 527.
[55] ELDER S S, EMMERSON E. Senescent cells and macrophages: key players for regeneration? [J]. Open Biol, 2020, 10(12): 200309.
[56] HAMMERICH L, TACKE F. Hepatic inflammatory responses in liver fibrosis [J]. Nat Rev Gastroenterol Hepatol, 2023, 20(10): 633-646.
[57] COLLINS B H, HOLZKNECHT Z E, LYNN K A, et al. Association of age-dependent liver injury and fibrosis with immune cell populations [J]. Liver Int, 2013, 33(8): 1175-1186.
[58] RAO J, WANG H, NI M, et al. FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2 [J]. Gut, 2022, 71(12): 2539-2550.
[59] ZHANG S, WAN D, ZHU M, et al. CD11b+CD43hiLy6Clo splenocyte-derived macrophages exacerbate liver fibrosis via spleen-liver axis [J]. Hepatology, 2023, 77(5): 1612-1629.
[60] TIAN Z, HOU X, LIU W, et al. Macrophages and hepatocellular carcinoma [J]. Cell Biosci, 2019, 9: 79.
[61] TIAN L, SHAO M, GONG Y, et al. Epigenetic platinum complexes breaking the “eat me/don’t eat me” balance for enhanced cancer chemoimmunotherapy [J]. Bioconjugate Chem, 2022, 33(2): 343- 352.
[62] FRANCESCHI C, GARAGNANI P, PARINI P, e t a l . Inflammaging: a new immune-metabolic viewpoint for age-related diseases [J]. Nat Rev Endocrinol, 2018, 14(10): 576-590.
[63] ZHAO B, WU B, FENG N, et al. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications [J]. J Hematol Oncol, 2023, 16(1): 28.
[64] YAO J, LI Y, WANG H. The roles of myeloid cells in aging-related liver diseases [J]. Int J Biol Sci, 2023, 19(5): 1564-1578.
[65] GENG F, XU M, ZHAO L, et al. Quercetin alleviates pulmonary fibrosis in mice exposed to silica by inhibiting macrophage senescence [J]. Front Pharmacol, 2022, 13: 912029.
[66] PRIETO L I, STURMLECHNER I, GRAVES S I, et al. Senescent alveolar macrophages promote early-stage lung tumorigenesis [J]. Cancer Cell, 2023, 41(7): 1261-1275.e6.
[67] HASTON S, GONZALEZ-GUALDA E, MORSLI S, et al. Clearance of senescent macrophages ameliorates tumorigenesis in KRAS-driven lung cancer [J]. Cancer Cell, 2023, 41(7): 1242-1260.e6.
[68] LI C J, XIAO Y, SUN Y C, et al. Senescent immune cells release grancalcin to promote skeletal aging [J]. Cell Metab, 2021, 33(10): 1957-1973. e6.
[69] BAI L, LIU Y, ZHANG X, et al. Osteoporosis remission via an anti-inflammaging effect by icariin activated autophagy [J]. Biomaterials, 2023, 297: 122125.
[70] ÖZCAN A, BOYMAN O. Mechanisms regulating neutrophil responses in immunity, allergy, and autoimmunity [J]. Allergy, 2022, 77(12): 3567-3583.
[71] VAN AVONDT K, STRECKER J K, TULOTTA C, et al. Neutrophils in aging and aging-related pathologies [J]. Immunol Rev, 2023, 314(1): 357-375.
[72] CASANOVA-ACEBES M, PITAVAL C, WEISS L A, et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance [J]. Cell, 2013, 153(5): 1025-1035.
[73] CHATTA G S, ANDREWS R G, RODGER E, et al. Hematopoietic progenitors and aging: alterations in granulocytic precursors and responsiveness to recombinant human G-CSF, GM-CSF, and IL-3 [J]. J Gerontol, 1993, 48(5): M207-M212.
[74] FERNÁNDEZ-GARRIDO J, NAVARRO-MARTÍNEZ R, BUIGUES-GONZÁLEZ C, et al. The value of neutrophil and lymphocyte count in frail older women [J]. Exp Gerontol, 2014, 54: 35-41.
[75] SERRE-MIRANDA C, ROQUE S, BARREIRA-SILVA P, et al. Age-related sexual dimorphism on the longitudinal progression of blood immune cells in BALB/cByJ mice [J]. J Gerontol A Biol Sci Med Sci, 2022, 77(5): 883-891.
[76] LAGNADO A, LESLIE J, RUCHAUD-SPARAGANO M H, et al. Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner [J]. EMBO J, 2021, 40(9): e106048.
[77] SAPEY E, GREENWOOD H, WALTON G, et al. Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: Toward targeted treatments for immunosenescence [J]. Blood, 2014, 123(2): 239-248.
[78] SAPEY E, PATEL J M, GREENWOOD H L, et al. Pulmonary infections in the elderly lead to impaired neutrophil targeting, which is improved by simvastatin [J]. Am J Respir Crit Care Med, 2017, 196(10): 1325-1336.
[79] BARKAWAY A, ROLAS L, JOULIA R, et al. Age-related changes in the local milieu of inflamed tissues cause aberrant neutrophil trafficking and subsequent remote organ damage [J]. Immunity, 2021, 54(7): 1494-1510.e7.
[80] DUBEY M, NAGARKOTI S, AWASTHI D, et al. Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase- 3-dependent mechanism [J]. Cell Death Dis, 2016, 7(9): e2348.
[81] NOGUEIRA-NETO J, CARDOSO A S C, MONTEIRO H P, et al. Basal neutrophil function in human aging: implications in endothelial cell adhesion [J]. Cell Biol Int, 2016, 40(7): 796-802.
[82] BUTCHER S, CHAHEL H, LORD J M. Ageing and the neutrophil: no appetite for killing? [J]. Immunology, 2000, 100(4): 411-416.
[83] WESSELS I, JANSEN J, RINK L, et al. Immunosenescence of polymorphonuclear neutrophils [J]. Sci World J, 2010, 10: 145-160.
[84] SIMMONS S R, TCHALLA E Y I, BHALLA M, et al. The age-driven decline in neutrophil function contributes to the reduced efficacy of the pneumococcal conjugate vaccine in old hosts [J]. Front Cell Infect Microbiol, 2022, 12: 849224.
[85] BHALLA M, SIMMONS S R, ABAMONTE A, et al. Extracellular adenosine signaling reverses the age-driven decline in the ability of neutrophils to kill Streptococcus pneumoniae [J]. Aging Cell, 2020, 19(10): e13218.
[86] PERA A, CAMPOS C, LÓPEZ N, et al. Immunosenescence: implications for response to infection and vaccination in older people [J]. Maturitas, 2015, 82(1): 50-55.
[87] ZHANG D, CHEN G, MANWANI D, et al. Neutrophil ageing is regulated by the microbiome [J]. Nature, 2015, 525(7570): 528- 532.
[88] HUANG J, HONG W, WAN M, et al. Molecular mechanisms and therapeutic target of NETosis in diseases [J]. MedComm, 2022, 3(3): e162.
[89] GUILLOTIN F, FORTIER M, PORTES M, et al. Vital NETosis vs. suicidal NETosis during normal pregnancy and preeclampsia [J]. Front Cell Dev Biol, 2023, 10: 1099038.
[90] CASTANHEIRA F V S, KUBES P. Neutrophils and NETs in modulating acute and chronic inflammation [J]. Blood, 2019, 133(20): 2178-2185.
[91] SABBATINI M, BONA E, NOVELLO G, et al. Aging hampers neutrophil extracellular traps (NETs) efficacy [J]. Aging Clin Exp Res, 2022, 34(10): 2345-2353.
[92] TSENG C W, KYME P A, ARRUDA A, et al. Innate immune dysfunctions in aged mice facilitate the systemic dissemination of methicillin-resistant S. aureus [J]. PLoS One, 2012, 7(7): e41454.
[93] XU F, ZHANG C, ZOU Z, et al. Aging-related Atg5 defect impairs neutrophil extracellular traps formation [J]. Immunology, 2017, 151(4): 417-432.
[94] BANCARO N, CALÌ B, TROIANI M, et al. Apolipoprotein E induces pathogenic senescent-like myeloid cells in prostate cancer [J]. Cancer Cell, 2023, 41(3): 602-619.e11.
[95] JABLONSKA J, LESCHNER S, WESTPHAL K, et al. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model [J]. J Clin Invest, 2010, 120(4): 1151-1164.
[96] DEVI S, WANG Y, CHEW W K, et al. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow [J]. J Exp Med, 2013, 210(11): 2321-2336.
[97] KREISEL D, NAVA R G, LI W, et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation [J]. Proc Natl Acad Sci USA, 2010, 107(42): 18073-18078.
[98] KOBAYASHI S D, DELEO F R. Role of neutrophils in innate immunity: a systems biology-level approach [J]. Wiley Interdiscip Rev Syst Biol Med, 2009, 1(3): 309-33.
[99] PELLETIER M, MAGGI L, MICHELETTI A, et al. Evidence for a cross-talk between human neutrophils and Th17 cells [J]. Blood, 2010, 115(2): 335-343.
[100] SEITZ H K, BATALLER R, CORTEZ-PINTO H, et al. Alcoholic liver disease [J]. Nat Rev Dis Primers, 2018, 4: 16.
[101] AVILA M A, DUFOUR J F, GERBES A L, et al. Recent advances in alcohol-related liver disease (ALD): summary of a Gut round table meeting [J]. Gut, 2020, 69(4): 764-780.
[102] WHITE A M, OROSZ A, POWELL P A, et al. Alcohol and aging - An area of increasing concern [J]. Alcohol, 2023, 107: 19-27.
[103] BLAZER D G, WU L T. The epidemiology of at-risk and binge drinking among middle-aged and elderly community adults: National Survey on Drug Use and Health [J]. Am J Psychiatry, 2009, 166(10): 1162-1169.
[104] PAWELEC G, GOLDECK D, DERHOVANESSIAN E. Inflammation, ageing and chronic disease [J]. Curr Opin Immunol, 2014, 29: 23-28.
[105] CHO Y, SZABO G. Two faces of neutrophils in liver disease development and progression [J]. Hepatology, 2021, 74(1): 503- 512.
[106] KHAN R S, LALOR P F, THURSZ M, et al. The role of neutrophils in alcohol-related hepatitis [J]. J Hepatol, 2023, 79(4): 1037-1048.
[107] REN R, HE Y, DING D, et al. Aging exaggerates acute-on-chronic alcohol-induced liver injury in mice and humans by inhibiting neutrophilic sirtuin 1-C/EBPα-miRNA-223 axis [J]. Hepatology, 2022, 75(3): 646-660.
[108] TAN Z, QIAN X, JIANG R, et al. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation [J]. J Immunol, 2013, 191(4): 1835-1844.
[109] FABRE T, MOLINA M F, SOUCY G, et al. Type 3 cytokines IL-17A and IL-22 drive TGF-β-dependent liver fibrosis [J]. Sci Immunol, 2018, 3(28): eaar7754.
[110] ZHOU Z, XU M J, CAI Y, et al. Neutrophil-hepatic stellate cell interactions promote fibrosis in experimental steatohepatitis [J]. Cell Mol Gastroenterol Hepatol, 2018, 5(3): 399-413.
[111] IBUSUKI R, UTO H, ARIMA S, et al. Transgenic expression of human neutrophil peptide-1 enhances hepatic fibrosis in mice fed a choline-deficient, L-amino acid-defined diet [J]. Liver Int, 2013, 33(10): 1549-1556.
[112] CALVENTE C J, TAMEDA M, JOHNSON C D, et al. Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via micro RNA-223 [J]. J Clin Invest, 2019, 129(10): 4091- 4109.
[113] PALMER S, ALBERGANTE L, BLACKBURN C C, et al. Thymic involution and rising disease incidence with age [J]. Proc Natl Acad Sci USA, 2018, 115(8): 1883-1888.
[114] SEN B, AGGARWAL S, NATH R, et al. Secretome of senescent hepatoma cells modulate immune cell fate by macrophage polarization and neutrophil extracellular traps formation [J]. Med Oncol, 2022, 39(9): 134.
[115] LUO Z, LU Y, SHI Y, et al. Neutrophil hitchhiking for drug delivery to the bone marrow [J]. Nat Nanotechnol, 2023, 18(6): 647-656.
[116] OU B, LIU Y, GAO Z, et al. Senescent neutrophils-derived exosomal piRNA-17560 promotes chemoresistance and EMT of breast cancer via FTO-mediated m6A demethylation [J]. Cell Death Dis, 2022, 13(10): 905.
[117] YANG C, WANG Z, LI L, et al. Aged neutrophils form mitochondria-dependent vital NETs to promote breast cancer lung metastasis [J]. J Immunother Cancer, 2021, 9(10): e002875.
[118] QIAN F, GUO X, WANG X, et al. Reduced bioenergetics and toll-like receptor 1 function in human polymorphonuclear leukocytes in aging [J]. Aging, 2014, 6(2): 131-139.
[119] VERSCHOOR C P, LOUKOV D, NAIDOO A, et al. Circulating TNF and mitochondrial DNA are major determinants of neutrophil phenotype in the advanced-age, frail elderly [J]. Mol Immunol, 2015, 65(1): 148-156.
[120] BARTLETT D B, FOX O, MCNULTY C L, et al. Habitual physical activity is associated with the maintenance of neutrophil migratory dynamics in healthy older adults [J]. Brain Behav Immun, 2016, 56: 12-20.
[121] QING J, REN Y, ZHANG Y, et al. Dopamine receptor D2 antagonism normalizes profibrotic macrophage-endothelial crosstalk in non-alcoholic steatohepatitis [J]. J Hepatol, 2022, 76(2): 394-406.
[122] WU L, YAN J, BAI Y, et al. An invasive zone in human liver cancer identified by Stereo-seq promotes hepatocyte-tumor cell crosstalk, local immunosuppression and tumor progression [J]. Cell Res, 2023, 33(8): 585-603.
[123] ZHANG N, YAO H, ZHANG Z, et al. Ongoing involvers and promising therapeutic targets of hepatic fibrosis: the hepatic immune microenvironment [J]. Front Immunol, 2023, 14: 1131588.
[124] LESLIE J, MACIA M G, LULI S, et al. c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis [J]. Nat Metab, 2020, 2(11): 1350-1367.
[125] GAO Y S, QIAN M Y, WEI Q Q, et al. WZ66, a novel acetyl- CoA carboxylase inhibitor, alleviates nonalcoholic steatohepatitis (NASH) in mice [J]. Acta Pharmacol Sin, 2020, 41(3): 336-347.
[126] MCMAHAN R H, WANG X X, CHENG L L, et al. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease [J]. J Biol Chem, 2013, 288(17): 11761-11770.
[127] LIAN J, YUE Y, YU W, et al. Immunosenescence: a key player in cancer development [J]. J Hematol Oncol, 2020, 13(1): 151.
[128] LIU Z, WU B, LIU X, et al. CD73/NT5E-mediated ubiquitination of AURKA regulates alcohol-related liver fibrosis via modulating hepatic stellate cell senescence [J]. Int J Biol Sci, 2023, 19(3): 950- 966.