[1] KORNBERG R D. Chromatin structure: a repeating unit of histones and DNA [J]. Science, 1974, 184: 868-871. https://doi.org:10.1126/science.184.4139.868.
[2] JENUWEIN T, ALLIS C D. Translating the histone code [J]. Science, 2001, 293: 1074-1080. https://doi.org:10.1126/science.1063127.
[3] PETERSON C L, LANIEL M A. Histones and histone modifications [J]. Curr Biol, 2004, 14: R546-551. https://doi.org:10.1016/j.cub.2004.07.007.
[4] GRANT P A. A tale of histone modifications [J]. Genome Biol, 2001, 2: reviews0003.1. https://doi.org:10.1186/gb-2001-2-4-reviews0003.
[5] BOWMAN G D, POIRIER M G. Post-translational modifications of histones that influence nucleosome dynamics [J]. Chem Rev, 2015, 115: 2274-2295. https://doi.org:10.1021/cr500350x.
[6] GREER E L, SHI Y. Histone methylation: a dynamic mark in health, disease and inheritance [J]. Nat Rev Genet, 2012, 13: 343-357. https://doi.org:10.1038/nrg3173.
[7] BROWNELL J E, ZHOU J, RANALLI T, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation [J]. Cell, 1996, 84: 843-851. https://doi.org:10.1016/s0092-8674(00)81063-6.
[8] DE RUBERTIS F, KADOSH D, HENCHOZ S, et al. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast [J]. Nature, 1996, 384: 589-591. https://doi.org:10.1038/384589a0.
[9] RUNDLETT S E, CARMEN A A, KOBAYASHI R, et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription [J]. Proc Natl Acad Sci USA, 1996, 93: 14503-14508. https://doi.org:10.1073/pnas.93.25.14503.
[10] ROTH S Y, DENU J M, ALLIS C D. Histone acetyltransferases [J]. Annu Rev Biochem, 2001, 70: 81-120. https://doi.org:10.1146/annurev.biochem.70.1.81.
[11] SETO E, YOSHIDA M. Erasers of histone acetylation: the histone deacetylase enzymes [J]. Cold Spring Harb Perspect Biol, 2014, 6: a018713. https://doi.org:10.1101/cshperspect.a018713.
[12] CARROZZA M J, UTLEY R T, WORKMAN J L, et al. The diverse functions of histone acetyltransferase complexes [J]. Trends Genet, 2003, 19: 321-329. https://doi.org:10.1016/S0168-9525(03)00115-X.
[13] KUO M H, ALLIS C D. Roles of histone acetyltransferases and deacetylases in gene regulation [J]. Bioessays, 1998, 20: 615-626. https://doi.org:10.1002/(SICI)1521-1878(199808)20:8.
[14] DE RUIJTER A J, VAN GENNIP A H, CARON H N, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family [J]. Biochem J, 2003, 370: 737-749. https://doi.org:10.1042/BJ20021321.
[15] WEST A C, JOHNSTONE R W. New and emerging HDAC inhibitors for cancer treatment [J]. J Clin Invest, 2014, 12: 30-39. https://doi.org:10.1172/JCI69738.
[16] KAPLAN C D, LAPRADE L, WINSTON F. Transcription elongation factors repress transcription initiation from cryptic sites [J]. Science, 2003, 301: 1096-1099. https://doi.org:10.1126/science.1087374.
[17] CARROZZA M J, BING L, FLORENS L, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription [J]. Cell, 2005, 123: 581-592. https://doi.org:10.1016/j.cell.2005.10.023.
[18] KEOGH M-C, KURDISTANI S K, MORRIS S A, et al. Cotranscriptional Set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex [J]. Cell, 2005, 123: 593-605. https://doi.org:10.1016/j.cell.2005.10.025.
[19] RUNDLETT S E, CARMEN A A, SUKA N, et al. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3 [J]. Nature, 1998, 392: 831-835. https://doi.org:10.1038/33952.
[20] HAYAKAWA T, NAKAYAMA J. Physiological roles of class I HDAC complex and histone demethylase [J]. J Biomed Biotechnol, 2011: 129383. https://doi.org:10.1155/2011/129383.
[21] LI B, GOGOL M, CAREY M, et al. Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin [J]. Science, 2007, 316: 1050-1054. https://doi.org:10.1126/science.1139004.
[22] HUH J W, WU J, LEE C H, et al. Multivalent di-nucleosome recognition enables the Rpd3S histone deacetylase complex to tolerate decreased H3K36 methylation levels [J]. EMBO J, 2012, 31: 3564-3574. https://doi.org:10.1038/emboj.2012.221.
[23] SHEVCHENKO A, ROGUEV A, SCHAFT D, et al. Chromatin central: towards the comparative proteome by accurate mapping of the yeast proteomic environment [J]. Genome Biol, 2008, 9: R167. https://doi.org:10.1186/gb-2008-9-11-r167.
[24] WAGNER F F, WEÏWER M, STEINBACHER S, et al. Kinetic and structural insights into the binding of histone deacetylase 1 and 2 (HDAC1, 2) inhibitors [J]. Bioorg Med Chem, 2016, 24: 4008-4015. https://doi.org:10.1016/j.bmc.2016.06.040.
[25] MIYAKE Y, KEUSCH J J, WANG L, et al. Structural insights into HDAC6 tubulin deacetylation and its selective inhibition [J]. Nat Chem Biol, 2016, 12: 748-754. https://doi.org:10.1038/nchembio.2140.
[26] VÖGERL K, ONG N, SENGER J, et al. Synthesis and biological investigation of phenothiazine-based benzhydroxamic acids as selective histone deacetylase 6 inhibitors [J]. J Med Chem, 2019, 62: 1138-1166. https://doi.org:10.1021/acs.jmedchem.8b01090.
[27] VANNINI A, VOLPARI C, GALLINARI P, et al. Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8-substrate complex [J]. EMBO Rep, 2007, 8: 879-884. https://doi.org:10.1038/sj.embor.7401047.
[28] WATSON P J, FAIRALL L, SANTOS G M, et al. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate [J]. Nature, 2012, 481: 335-340. https://doi.org:10.1038/nature10728.
[29] TURNBULL R E, FAIRALL L, SALEH A, et al. The MiDAC histone deacetylase complex is essential for embryonic development and has a unique multivalent structure [J]. Nat Commun, 2020, 11: 3252. https://doi.org:10.1038/s41467-020-17078-8.
[30] MILLARD C J, WATSON P J, CELARDO I, et al. Class I HDACs share a common mechanism of regulation by inositol phosphates [J]. Mol Cell, 2013, 51: 57-67. https://doi.org:10.1016/j.molcel.2013.05.020.
[31] WATSON P J, MILLARD C J, RILEY A M, et al. Insights into the activation mechanism of class I HDAC complexes by inositol phosphates [J]. Nat Commun, 2016, 7: 11262. https://doi. org:10.1038/ncomms11262.
[32] MILLARD C J, FAIRALL L, RAGAN T J, et al. The topology of chromatin-binding domains in the NuRD deacetylase complex [J]. Nucleic Acids Res, 2020, 48: 12972-12982. https://doi.org:10.1093/nar/gkaa1121.
[33] WANG C, GUO Z, CHU C, et al. Two assembly modes for SIN3 histone deacetylase complexes [J]. Cell Discov, 2023, 9: 42. https://doi.org:10.1038/s41421-023-00539-x.
[34] WANG X, WANG Y, LIU S, et al. Class I histone deacetylase complex: structure and functional correlates [J]. Proc Natl Acad Sci USA, 2023, 120: e2307598120. https://doi.org:10.1073/pnas.2307598120.
[35] WAN M S M, MUHAMMAD R, KOLIOPOULOS M G, et al. Mechanism of assembly, activation and lysine selection by the SIN3B histone deacetylase complex [J]. Nat Commun, 2023, 14: 2556. https://doi.org:10.1038/s41467-023-38276-0.
[36] GUAN H, WANG P, ZHANG P, et al. Diverse modes of H3K36me3-guided nucleosomal deacetylation by Rpd3S [J]. Nature, 2023, 620: 669-675. https://doi.org:10.1038/s41586-023-06349-1.
[37] DONG S, LI H, WANG M, et al. Structural basis of nucleosome deacetylation and DNA linker tightening by Rpd3S histone deacetylase complex [J]. Cell Res, 2023, 33: 790-801. https://doi. org:10.1038/s41422-023-00869-1.
[38] MARKERT J W, VOS S M, FARNUNG L. Structure of the complete S. cerevisiae Rpd3S-nucleosome complex [J]. Nature Structural & Molecular Biology, 2023. https://doi.org:10.1101/2023.08.03.551877.
[39] GUO Z, CHU C, LU Y, et al. Structure of a SIN3-HDAC complex from budding yeast [J]. Nat Struct Mol Biol, 2023, 30: 753-760. https://doi.org:10.1038/s41594-023-00975-z.
[40] PATEL A B, QING J, TAM K H, et al. Cryo-EM structure of the Saccharomyces cerevisiae Rpd3L histone deacetylase complex [J]. Nat Commun, 2023, 14: 3061. https://doi.org:10.1038/s41467-023-38687-z.
[41] WANG H, CUI H. Structure of histone deacetylase complex Rpd3S bound to nucleosome [J]. Nat Struct Mol Biol, 2023, 30: 1893-1901.
[42] WANG X, ZHANG Y, CAI G. Structure of a Rpd3/HDAC holoenzyme complex bound to the nucleosome [EB/OL]. (2023-03-16) [2023-09-25]. https://doi.org/10.21203/rs.3.rs-2667786/v1.