[1] SEYMOUR D K, FILIAULT D L, HENRY I M, et al. Rapid creation of Arabidopsis doubled haploid lines for quantitative trait locus mapping [J]. Proc Natl Acad Sci USA, 2012, 109(11): 4227-4232.
[2] DWIVEDI S L, BRITT A B, TRIPATHI L, et al. Haploids: constraints and opportunities in plant breeding [J]. Biotechnol Adv, 2015, 33(6): 812-829.
[3] 张如养, 段民孝, 赵久然, 等. 单倍体技术在玉米种质改良和育种中的应用方向[J]. 作物杂志, 2012(5): 4-8.
[4] HARLAND S C. A note on a peculiar type of “rogue” in Sea Island cotton [J]. Agr News Barbados, 1920, 19: 29.
[5] BLAKESLEE A F, BELLING J, FARNHAM M E, et al. A haploid mutant in the jimson weed, “Datura stramonium” [J]. Science, 1922, 55(1433): 646-647.
[6] CLAUSEN R E, MANN M C. Inheritance in Nicotiana tabacum [J]. Proc Natl Acad Sci USA, 1924, 10(4): 121-124.
[7] GAINES E F, AASE H C. A haploid wheat plant [J]. Am J Bot, 1926, 13(6): 373-385.
[8] KIMBER G, RILEY R. Haploid angiosperms [J]. Bot Rev, 1963, 29(4): 480-531.
[9] DUNWELL J M. Haploids in flowering plants: origins and exploitation [J]. Plant Biotechnol J, 2010, 8(4): 377-424.
[10] MALUSZYNSKI M, KASHA K J, EORSTER B P, et al. Doubled haploid production in crop plants: a manual [M]. New York: Springer Science & Business Media, 2003.
[11] TOURAEV A, FORSTER B P, JAIN S M. Advances in haploid production in higher plants [M]. Dordrecht: Springer, 2008.
[12] OHKAWA Y, SUENAGA K, OGAWA T. Production of haploid wheat plants through pollination of sorghum pollen [J]. Japan J Breed, 1992, 42(4): 891-894.
[13] RIERA-LIZARAZU O, MUJEEB-KAZI A. Polyhaploid production in the triticeae: wheat × tripsacum crosses [J]. Crop Sci, 1993, 33(5): 973-976.
[14] LAURIE D A, O'DONOUGHUE L S. Wheat × maize crosses for the production of wheat haploids [M]//BAJAJ Y P S. Maize. Heidelberg: Springer, 1994: 102-118.
[15] PREMVARANON P, VEARASILP S, THANAPORNPOONPONG S N, et al. In vitro studies to produce double haploid in Indica hybrid rice [J]. Biologia, 2011, 66(6): 1074-1081.
[16] MALUSZYNSKA J. Cytogenetic tests for ploidy level analyses—chromosome counting [M]//MALUSZYNSKI M, KASHA K J, FORSTER B P, et al. Doubled haploid production in crop plants. Dordrecht: Springer, 2003: 391-395.
[17] KERMICLE J L. Androgenesis conditioned by a mutation in maize [J]. Science, 1969, 166(3911): 1422-1424.
[18] EVANS M M S. The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development [J]. Plant Cell, 2007, 19(1): 46-62.
[19] HUANG B Q, SHERIDAN W F. Embryo sac development in the maize indeterminate gametophyte1 mutant: abnormal nuclear behavior and defective microtubule organization [J]. Plant Cell, 1996, 8(8): 1391-1407.
[20] COE E H JR. A line of maize with high haploid frequency [J]. Am Nat, 1959, 93(873): 381-382.
[21] ROEBER F, GORDILLO G A, GEIGER H H. In vivo haploid induction in maize - Performance of new inducers and significance of doubled haploid lines in hybrid breeding [J]. Maydica, 2005, 50(3): 275-283.
[22] PRIGGE V, XU X, LI L, et al. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize [J]. Genetics, 2012, 190(2): 781-793.
[23] HU H, SCHRAG T A, PEIS R, et al. The genetic basis of haploid induction in maize identified with a novel genome-wide association method [J]. Genetics, 2016, 202(4): 1267-1276.
[24] DONG X, XU X, MIAO J, et al. Fine mapping of qhir1 influencing in vivo haploid induction in maize [J]. Theor Appl Genet, 2013, 126(7): 1713-1720.
[25] LASHERMES P, BECKERT M. Genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines [J]. Theoret Appl Genetics, 1988, 76(3): 405-410.
[26] BARRET P, BRINKMANN M, BECKERT M. A major locus expressed in the male gametophyte with incomplete penetrance is responsible for in situ gynogenesis in maize [J]. Theor Appl Genet, 2008, 117(4): 581-594.
[27] LIU C, LI W, ZHONG Y, et al. Fine mapping of qhir8 affecting in vivo haploid induction in maize [J]. Theor Appl Genet, 2015, 128(12): 2507-2515.
[28] KELLIHER T, STARR D, RICHBOURG L, et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction [J]. Nature, 2017, 542(7639): 105-109.
[29] LIU C, LI X, MENG D, et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize [J]. Mol Plant, 2017, 10(3): 520-522.
[30] GILLES L M, KHALED A, LAFFAIRE J B, et al. Loss of pollenspecific phospholipase not like dad triggers gynogenesis in maize [J]. EMBO J, 2017, 36(6): 707-717.
[31] ZHONG Y, LIU C, QI X, et al. Mutation of ZmDMP enhances haploid induction in maize [J]. Nat Plants, 2019, 5(6): 575-580.
[32] ZHONG Y, CHEN B, LI M, et al. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis [J]. Nat Plants, 2020, 6(5): 466-472.
[33] LI Y, LIN Z, YUE Y, et al. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize [J]. Nat Plants, 2021, 7(12): 1579-1588.
[34] LI X, MENG D, CHEN S, et al. Single nucleus sequencing reveals spermatid chromosome fragmentation as a possible cause of maize haploid induction [J]. Nat Commun, 2017, 8(1): 991.
[35] JIANG C, SUN J, LI R, et al. A reactive oxygen species burst causes haploid induction in maize [J]. Mol Plant, 2022, 15(6): 943-955.
[36] ASKER S. A monoploid of potentilla argentea [J]. Hereditas, 1983, 99(2): 303-304.
[37] OIYAMA I, KOBAYASHI S. Haploids obtained from diploid × triploid crosses of citrus [J]. J Japan Soc Hort Sci, 1993, 62(1): 89-93.
[38] GERMANÀ M A, CHIANCONE B. Gynogenetic haploids of Citrus after in vitro pollination with triploid pollen grains [J]. Plant Cell Tissue Organ Cult, 2001, 66(1): 59-66.
[39] BOSEMARK N O. Haploids and homozygous diploids, triploids and tetraploids in sugar beet [J]. Hereditas, 2009, 69(2): 193-203.
[40] CISTUE L, ROMAGOSA I, TSUCHIYA T, et al. Karyotype analysis in haploid sugarbeet [J]. Bot Gaz, 1985, 146(2): 259-263.
[41] ISHII T, KARIMI-ASHTIYANI R, HOUBEN A. Haploidization via chromosome elimination: means and mechanisms [J]. Annu Rev Plant Biol, 2016, 67: 421-438.
[42] KASHA K J, KAO K N. High frequency haploid production in barley (Hordeum vulgare L.) [J]. Nature, 1970, 225(5235): 874-876.
[43] GERNAND D, RUTTEN T, PICKERING R, et al. Elimination of chromosomes in Hordeum vulgare × H. bulbosum crosses at mitosis and interphase involves micronucleus formation and progressive heterochromatinization [J]. Cytogenet Genome Res, 2006, 114(2): 169-174.
[44] FU S, YIN L, XU M, et al. Maternal doubled haploid production in interploidy hybridization between Brassica napus and Brassica allooctaploids [J]. Planta, 2018, 247(1): 113-125.
[45] SIDHU P K, HOWES N K, AUNG T, et al. Factors affecting oat haploid production following oat × maize hybridization [J]. Plant Breed, 2006, 125(3): 243-247.
[46] PRATAP A, SETHI G S, CHAUDHARY H K. Relative efficiency of different Gramineae Genera for haploid induction in triticale and triticale × wheat hybrids through the chromosome elimination technique [J]. Plant Breed, 2005, 124(2): 147-153.
[47] KOMEDA N, CHAUDHARY H K, SUZUKI G, et al. Cytological evidence for chromosome elimination in wheat × Imperata cylindrica hybrids [J]. Genes Genet Syst, 2007, 82(3): 241-248.
[48] BITSCH C, GRÖGER S, LELLEY T. Effect of parental genotypes on haploid embryo and plantlet formation in wheat × maize crosses [J]. Euphytica, 1998, 103(3): 319-323.
[49] GARCIA-LLAMAS C, RAMIREZ M C, BALLESTEROS J. Effect of pollinator on haploid production in durum wheat crossed with maize and pearl millet [J]. Plant Breed, 2004, 123(2): 201-203.
[50] CAMPBELL A W, GRIFFIN W B, BURRITT D J, et al. The importance of light intensity for pollen tube growth and embryo survival in wheat × maize crosses [J]. Ann Bot, 2001, 87(4): 517-522.
[51] HOWMAN E V, FOWLER K J, NEWSON A J, et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice [J]. Proc Natl Acad Sci USA, 2000, 97(3): 1148-1153.
[52] OEGEMA K, DESAI A, RYBINA S, et al. Functional analysis of kinetochore assembly in Caenorhabditis elegans [J]. J Cell Biol, 2001, 153(6): 1209-1226.
[53] BLOWER M D, DAIGLE T, KAUFMAN T, et al. Drosophila CENP-a mutations cause a BubR1-dependent early mitotic delay without normal localization of kinetochore components [J]. PLoS Genet, 2006, 2(7): e110.
[54] SANEI M, PICKERING R, KUMKE K, et al. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids [J]. Proc Natl Acad Sci USA, 2011, 108(33): E498-E505.
[55] WANG N, DAWE R K. Centromere size and its relationship to haploid formation in plants [J]. Mol Plant, 2018, 11(3): 398-406.
[56] WARBURTON P E, COOKE C A, BOURASSA S, et al. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres [J]. Curr Biol, 1997, 7(11): 901-904.
[57] MCKINLEY K L, CHEESEMAN I M. The molecular basis for centromere identity and function [J]. Nat Rev Mol Cell Biol, 2016, 17(1): 16-29.
[58] LERMONTOVA I, SCHUBERT V, FUCHS J, et al. Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain [J]. Plant Cell,
2006, 18(10): 2443-2451.
[59] RAVI M, SHIBATA F, RAMAHI J S, et al. Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana [J].
PLoS Genet, 2011, 7(6): e1002121.
[60] MAHESHWARI S, TAN E H, WEST A, et al. Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids [J]. PLoS Genet, 2015, 11(1): e1004970.
[61] ZHANG X, LI X, MARSHALL J B, et al. Phosphoserines on maize CENTROMERIC HISTONE H3 and histone H3 demarcate the centromere and pericentromere during chromosome segregation [J]. Plant Cell, 2005, 17(2): 572-583.
[62] ALLSHIRE R C, KARPEN G H. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? [J]. Nat Rev Genet, 2008, 9(12): 923-937.
[63] STOLER S, KEITH K C, CURNICK K E, et al. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis [J]. Genes Dev, 1995, 9(5): 573-586.
[64] BUCHWITZ B J, AHMAD K, MOORE L L, et al. A histone-H3-like protein in C. elegans [J]. Nature, 1999, 401(6753): 547-548.
[65] LERMONTOVA I, KOROLEVA O, RUTTEN T, et al. Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation [J]. Plant J, 2011, 68(1): 40-50.
[66] RAVI M, CHAN S W L. Haploid plants produced by centromere mediated genome elimination [J]. Nature, 2010, 464(7288): 615-618.
[67] RAVI M, KWONG P N, MENORCA R M G, et al. The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana [J]. Genetics, 2010, 186(2): 461-471.
[68] BLACK B E, FOLTZ D R, CHAKRAVARTHY S, et al. Structural determinants for generating centromeric chromatin [J]. Nature, 2004, 430(6999): 578-582.
[69] BLACK B E, JANSEN L E T, MADDOX P S, et al. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-a targeting domain [J]. Mol Cell, 2007, 25(2): 309-322.
[70] SULLIVAN K F, HECHENBERGER M, MASRI K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere [J]. J Cell Biol, 1994, 127(3): 581-592.
[71] TACHIWANA H, KAGAWA W, SHIGA T, et al. Crystal structure of the human centromeric nucleosome containing CENP-A [J]. Nature, 2011, 476(7359): 232-235.
[72] ZHANG W, COLMENARES S U, KARPEN G H. Assembly of drosophila centromeric nucleosomes requires CID dimerization [J]. Mol Cell, 2012, 45(2): 263-269.
[73] KARIMI-ASHTIYANI R, ISHII T, NIESSEN M, et al. Point mutation impairs centromeric CENH3 loading and induces haploid plants [J]. Proc Natl Acad Sci USA, 2015, 112(36): 11211-11216.
[74] KUPPU S, TAN E H, NGUYEN H, et al. Point mutations in centromeric histone induce post-zygotic incompatibility and uniparental inheritance [J]. PLoS Genet, 2015, 11(9): e1005494.
[75] KUPPU S, RON M, MARIMUTHU M P A, et al. A variety of changes, including CRISPR/Cas9-mediated deletions, in CENH3 lead to haploid induction on outcrossing [J]. Plant Biotechnol J, 2020, 18(10): 2068-2080.
[76] WANG Z, CHEN M, YANG H, et al. A simple and highly efficient strategy to induce both paternal and maternal haploids through temperature manipulation [J]. Nat Plants, 2023, 9(5): 699-705.
[77] KALINOWSKA K, CHAMAS S, UNKEL K, et al. State-of-the-art and novel developments of in vivo haploid technologies [J]. Theor Appl Genet, 2019, 132(3): 593-605.
[78] OP DEN C R H M, VAN DIJK P J, GALLARD A. Method for the production of haploid and subsequent doubled haploid plants: WO 2017058022A1 [P]. 2017-04-06.
[79] LV J, YU K, WEI J, et al. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3 [J]. Nat Biotechnol, 2020, 38(12): 1397-1401.
[80] WANG N, GENT J I, DAWE R K. Haploid induction by a maize cenh3 null mutant [J]. Sci Adv, 2021, 7(4): eabe2299.
[81] RAYCHAUDHURI N, DUBRUILLE R, ORSI G A, et al. Transgenerational propagation and quantitative maintenance of paternal centromeres depends on Cid/Cenp-a presence in Drosophila sperm [J]. PLoS Biol, 2012, 10(12): e1001434.
[82] BAUDISCH B, PFORT I, SORGE E, et al. Nanobody-directed specific degradation of proteins by the 26S-proteasome in plants [J]. Front Plant Sci, 2018, 9: 130.
[83] MARIMUTHU M P A, MARUTHACHALAM R, BONDADA R, et al. Epigenetically mismatched parental centromeres trigger genome elimination in hybrids [J]. Sci Adv, 2021, 7(47): eabk1151.
[84] BASU S, DATTA M, SHARMA M, et al. Haploid production technology in wheat and some selected higher plants [J]. Aust J Crop Sci, 2011, 5: 1087-1093.
[85] THOMAS W T B, FORSTER B P, GERTSSON B. Doubled haploids in breeding [M]//MALUSZYNSKI M, KASHA K J, FORSTER B P, et al. Doubled haploid production in crop plants. Dordrecht: Springer, 2003: 337-349.
[86] COLLARD B C Y, JAHUFER M Z Z, BROUWER J B, et al. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts [J]. Euphytica, 2005, 142(1): 169-196.
[87] KEARSEY M J. QTL analysis: problems and (possible) solutions [M]//Quantitative genetics, genomics and plant breeding. Wallingford UK: CABI publishing, 2002: 45-58.
[88] FORSTER B P, HEBERLE-BORS E, KASHA K J, et al. The resurgence of haploids in higher plants [J]. Trends Plant Sci, 2007, 12(8): 368-375.
[89] MCNALLY K L, CHILDS K L, BOHNERT R, et al. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice [J]. Proc Natl Acad Sci USA, 2009, 106(30): 12273-12278.
[90] AHMAR S, GILL R A, JUNG K H, et al. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook [J]. Int J Mol Sci, 2020, 21(7): 2590.
[91] NIAZIAN M, SHARIATPANAHI M E. In vitro-based doubled haploid production: recent improvements [J]. Euphytica, 2020, 216(5): 69.
[92] TUVESSON S, DAYTEG C, HAGBERG P, et al. Molecular markers and doubled haploids in European plant breeding programmes [J]. Euphytica, 2007, 158(3): 305-312.
[93] LI J, CHENG D, GUO S, et al. Genomic selection to optimize doubled haploid-based hybrid breeding in maize [J]. BioRxiv, 2020: 287672.
[94] KRISHNAPPA G, SAVADI S, TYAGI B S, et al. Integrated genomic selection for rapid improvement of crops [J]. Genomics, 2021, 113(3): 1070-1086.
[95] YANG Z P, GILBERT J, SOMERS D J, et al. Marker assisted selection of fusarium head blight resistance genes in two doubled haploid populations of wheat [J]. Mol Breed, 2003, 12(4): 309-317.
[96] BAKHTIAR F, AFSHARI F, NAJAFIAN G, et al. Backcrossbreeding and doubled-haploid facilitated introgression of stripe rust resistance in bread wheat [J]. Arch Phytopathol Plant Prot, 2014, 47(14): 1675-1685.
[97] ARAÚJO L G, PRABHU A S, PEREIRA P A A, et al. Markerassisted selection for the rice blast resistance gene Pi-ar in a backcross population [J]. Cropp Breed Appl Biotechnol, 2010, 10(1): 23-31.
[98] GEIGER H H, ANDRÉS GORDILLO G, KOCH S. Genetic correlations among haploids, doubled haploids, and testcrosses in maize [J]. Crop Sci, 2013, 53(6): 2313-2320.
[99] FERRIE A M R, MÖLLERS C. Haploids and doubled haploids in Brassica spp. for genetic and genomic research [J]. Plant Cell Tiss Organ Cult, 2011, 104(3): 375-386.
[100] NIEUWHOF M. Pollination and contamination of Brassica oleracea L [J]. Euphytica, 1963, 12(1): 17-26.
[101] CEBALLOS H, KAWUKI R S, GRACEN V E, et al. Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava [J]. Theor Appl Genet, 2015, 128(9): 1647-1667.
[102] KELLIHER T, STARR D, SU X, et al. One-step genome editing of elite crop germplasm during haploid induction [J]. Nat Biotechnol, 2019, 37(3): 287-292.
[103] WANG B, ZHU L, ZHAO B, et al. Development of a haploidinducer mediated genome editing system for accelerating maize breeding [J]. Mol Plant, 2019, 12(4): 597-602.
[104] BIRCHLER J A, YAO H, CHUDALAYANDI S, et al. Heterosis [J]. Plant Cell, 2010, 22(7): 2105-2112.
[105] SPILLANE C, CURTIS M D, GROSSNIKLAUS U. Apomixis technology development—virgin births in farmers' fields? [J]. Nat Biotechnol, 2004, 22(6): 687-691.
[106] 张燕, 王春, 王克剑. 人工创制植物无融合生殖的研究进展[J]. 科学通报, 2020, 65(27): 2998-3007.
[107] MIEULET D, JOLIVET S, RIVARD M, et al. Turning rice meiosis into mitosis [J]. Cell Res, 2016, 26(11): 1242-1254.
[108] WANG C, LIU Q, SHEN Y, et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes [J]. Nat Biotechnol, 2019, 37(3): 283-286.
[109] BRITT A B, KUPPU S. Cenh3: an emerging player in haploid induction technology [J]. Front Plant Sci, 2016, 7: 357.
[110] SARKAR K R, COE E H. A genetic analysis of the origin of maternal haploids in maize [J]. Genetics, 1966, 54(2): 453-464.