[1] CONSORTIUM E P. An integrated encyclopedia of DNA elements in the human genome [J]. Nature, 2012, 489(7414): 57-74.
[2] SAW P E, XU X, CHEN J, et al. Non-coding RNAs: the new central dogma of cancer biology [J]. Sci China Life Sci, 2021, 64(1): 22-50.
[3] EDDY S R. Non-coding RNA genes and the modern RNA world [J]. Nat Rev Genet, 2001, 2(12): 919-929.
[4] SERGANOV A, NUDLER E. A decade of riboswitches [J]. Cell, 2013, 152(1/2): 17-24.
[5] NAHVI A, SUDARSAN N, EBERT M S, et al. Genetic control by a metabolite binding mRNA [J]. Chem Biol, 2002, 9(9): 1043.
[6] WINKLER W C, COHEN-CHALAMISH S, BREAKER R R. An mRNA structure that controls gene expression by binding FMN [J]. Proc Natl Acad Sci USA, 2002, 99(25): 15908-15913.
[7] WINKLER W, NAHVI A, BREAKER R R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression [J]. Nature, 2002, 419(6910): 952-956.
[8] ARIZA-MATEOS A, NUTHANAKANTI A, SERGANOV A. Riboswitch mechanisms: New tricks for an old dog [J]. Biochemistry (Mosc), 2021, 86(8): 962-975.
[9] WINKLER W C, NAHVI A, ROTH A, et al. Control of gene expression by a natural metabolite-responsive ribozyme [J]. Nature, 2004, 428(6980): 281-286.
[10] BOCOBZA S, ADATO A, MANDEL T, et al. Riboswitch-dependent gene regulation and its evolution in the plant kingdom [J]. Genes Dev, 2007, 21(22): 2874-2879.
[11] LEE E R, BAKER J L, WEINBERG Z, et al. An allosteric selfsplicing ribozyme triggered by a bacterial second messenger [J]. Science, 2010, 329(5993): 845-848.
[12] BREAKER R R. The biochemical landscape of riboswitch ligands [J]. Biochemistry, 2022, 61(3): 137-149.
[13] MCCOWN P J, CORBINO K A, STAV S, et al. Riboswitch diversity and distribution [J]. RNA, 2017, 23(7): 995-1011.
[14] LI S, HWANG X Y, STAV S, et al. The yjdF riboswitch candidate regulates gene expression by binding diverse azaaromatic compounds [J]. RNA, 2016, 22(4): 530-541.
[15] ROTH A, BREAKER R R. The structural and functional diversity of metabolite-binding riboswitches [J]. Annu Rev Biochem, 2009, 78: 305-334.
[16] PAVLOVA N, KALOUDAS D, PENCHOVSKY R. Riboswitch distribution, structure, and function in bacteria [J]. Gene, 2019, 708: 38-48.
[17] JOHNSON J E JR, REYES F E, POLASKI J T, et al. B12 cofactors directly stabilize an mRNA regulatory switch [J]. Nature, 2012, 492(7427): 133-137.
[18] SERGANOV A, POLONSKAIA A, PHAN A T, et al. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch [J]. Nature, 2006, 441(7097): 1167-1171.
[19] ATILHO R M, MIRIHANA ARACHCHILAGE G, GREENLEE E B, et al. A bacterial riboswitch class for the thiamin precursor HMPPP employs a terminator-embedded aptamer [J]. Elife, 2019, 8: e45210.
[20] SERGANOV A, HUANG L, PATEL D J. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch [J]. Nature, 2009, 458(7235): 233-237.
[21] WINKLER W C, NAHVI A, SUDARSAN N, et al. An mRNA structure that controls gene expression by binding S-adenosylmethionine [J]. Nat Struct Biol, 2003, 10(9): 701-707.
[22] CORBINO K A, BARRICK J E, LIM J, et al. Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria [J]. Genome Biol, 2005, 6(8): R70.
[23] FUCHS R T, GRUNDY F J, HENKIN T M. The S(MK) box is a new SAM-binding RNA for translational regulation of SAM synthetase [J]. Nat Struct Mol Biol, 2006, 13(3): 226-233.
[24] WEINBERG Z, REGULSKI E E, HAMMOND M C, et al. The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches [J]. RNA, 2008, 14(5): 822-828.
[25] POIATA E, MEYER M M, AMES T D, et al. A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria [J]. RNA, 2009, 15(11): 2046-2056.
[26] MIRIHANA ARACHCHILAGE G, SHERLOCK M E, WEINBERG Z, et al. SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches [J]. RNA Biol, 2018, 15(3): 371-378.
[27] WEINBERG Z, WANG J X, BOGUE J, et al. Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes [J]. Genome Biol, 2010, 11(3): R31.
[28] WANG J X, BREAKER R R. Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine [J]. Biochem Cell Biol, 2008, 86(2): 157-168.
[29] WANG J X, LEE E R, MORALES D R, et al. Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling [J]. Mol Cell, 2008, 29(6): 691-702.
[30] MONTANGE R K, BATEY R T. S t r u c t u r e o f t h e S-adenosylmethionine riboswitch regulatory mRNA element [J]. Nature, 2006, 441(7097): 1172-1175.
[31] GILBERT S D, RAMBO R P, VAN TYNE D, et al. Structure of the SAM-II riboswitch bound to S-adenosylmethionine [J]. Nat Struct Mol Biol, 2008, 15(2): 177-182.
[32] LU C, SMITH A M, FUCHS R T, et al. Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism [J]. Nat Struct Mol Biol, 2008, 15(10): 1076-1083.
[33] TRAUSCH J J, XU Z, EDWARDS A L, et al. Structural basis for diversity in the SAM clan of riboswitches [J]. Proc Natl Acad Sci USA, 2014, 111(18): 6624-6629.
[34] HUANG L, LILLEY D M J. Structure and ligand binding of the SAM-V riboswitch [J]. Nucleic Acids Res, 2018, 46(13): 6869-6879.
[35] SUN A, GASSER C, LI F, et al. SAM-VI riboswitch structure and signature for ligand discrimination [J]. Nat Commun, 2019, 10(1): 5728.
[36] HUANG L, LIAO T W, WANG J, et al. Crystal structure and ligandinduced folding of the SAM/SAH riboswitch [J]. Nucleic Acids Res, 2020, 48(13): 7545-7556.
[37] WEICKHMANN A K, KELLER H, WURM J P, et al. The structure of the SAM/SAH-binding riboswitch [J]. Nucleic Acids Res, 2019, 47(5): 2654-2665.
[38] EDWARDS A L, REYES F E, HEROUX A, et al. Structural basis for recognition of S-adenosylhomocysteine by riboswitches [J]. RNA, 2010, 16(11): 2144-2155.
[39] ZHANG K, LI S, KAPPEL K, et al. Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution [J]. Nat Commun, 2019, 10(1): 5511.
[40] ZHENG L, SONG Q, XU X, et al. Structure-based insights into recognition and regulation of SAM-sensing riboswitches [J]. Science China Life Sciences, 2022, 66(1): 31-50.
[41] MALKOWSKI S N, SPENCER T C J, BREAKER R R. Evidence that the nadA motif is a bacterial riboswitch for the ubiquitous enzyme cofactor NAD+ [J]. RNA, 2019, 25(12): 1616-1627.
[42] CHEN H, EGGER M, XU X, et al. Structural distinctions between NAD+ riboswitch domains 1 and 2 determine differential folding and ligand binding [J]. Nucleic Acids Res, 2020, 48(21): 12394-12406.
[43] PANCHAPAKESAN S S S, COREY L, MALKOWSKI S N, et al. A second riboswitch class for the enzyme cofactor NAD+ [J]. RNA, 2021, 27(1): 99-105.
[44] XU X, EGGER M, LI C, et al. Structure-based investigations of the NAD+-II riboswitch [J]. Nucleic Acids Research, 2023, 51(1): 54-67.
[45] AMES T D, RODIONOV D A, WEINBERG Z, et al. A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate [J]. Chem Biol, 2010, 17(7): 681-685.
[46] TRAUSCH J J, CERES P, REYES F E, et al. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer [J]. Structure, 2011, 19(10): 1413-1423.
[47] HUANG L, ISHIBE-MURAKAMI S, PATEL D J, et al. Longrange pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch [J]. Proc Natl Acad Sci USA, 2011, 108(36): 14801-14806.
[48] CHEN X, MIRIHANA ARACHCHILAGE G, BREAKER R R. Biochemical validation of a second class of tetrahydrofolate riboswitches in bacteria [J]. RNA, 2019, 25(9): 1091-1097.
[49] XU L, XIAO Y, ZHANG J, et al. Structural insights into translation regulation by the THF-II riboswitch [J]. Nucleic Acids Res, 2023, 51(2): 952-965.
[50] REGULSKI E E, MOY R H, WEINBERG Z, et al. A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism [J]. Mol Microbiol, 2008, 68(4): 918-932.
[51] KAVITA K, BREAKER R R. Discovering riboswitches: the past and the future [J]. Trends in Biochemical Sciences, 2023, 48(2): 119-141.
[52] MACHTEL P, BAKOWSKA-ZYWICKA K, ZYWICKI M. Emerging applications of riboswitches — from antibacterial targets to molecular tools [J]. J Appl Genet, 2016, 57(4): 531-541.
[53] TOPP S, GALLIVAN J P. Emerging applications of riboswitches in chemical biology [J]. ACS Chem Biol, 2010, 5(1): 139-148.
[54] SUDARSAN N, COHEN-CHALAMISH S, NAKAMURA S, et al. Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine [J]. Chem Biol, 2005, 12(12): 1325-1335.
[55] CHEN L, CRESSINA E, DIXON N, et al. Probing riboswitch-ligand interactions using thiamine pyrophosphate analogues [J]. Organic &
Biomolecular Chemistry, 2012, 10(30): 5924-5931.
[56] WAKCHAURE P D, GANGULY B. Molecular level insights into the inhibition of gene expression by thiamine pyrophosphate (TPP) analogs for TPP riboswitch: A well-tempered metadynamics simulations study [J]. J Mol Graph Model, 2021, 104: 107849.
[57] LUNSE C E, SCHULLER A, MAYER G. The promise of riboswitches as potential antibacterial drug targets [J]. International Journal of Medical Microbiology, 2014, 304(1): 79-92.
[58] OTT E, STOLZ J, LEHMANN M, et al. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis [J]. RNA Biol, 2009, 6(3): 276-280.
[59] HOWE J A, WANG H, FISCHMANN T O, et al. Selective smallmolecule inhibition of an RNA structural element [J]. Nature, 2015, 526(7575): 672-677.
[60] YOU M, LITKE J L, JAFFREY S R. Imaging metabolite dynamics in living cells using a Spinach-based riboswitch [J]. Proc Natl Acad Sci USA, 2015, 112(21): E2756-2765.
[61] MA Y, MOU Q, YAN P, et al. A highly sensitive and selective fluoride sensor based on a riboswitch-regulated transcription coupled with CRISPR-Cas13a tandem reaction [J]. Chem Sci, 2021, 12(35): 11740-11747.
[62] NELSON J W, BREAKER R R. The lost language of the RNA World [J]. Science Signaling, 2017, 10(483): eaam8812.
[63] GREENLEE E B, STAV S, ATILHO R M, et al. Challenges of ligand identification for the second wave of orphan riboswitch candidates [J]. RNA Biology, 2018, 15(3): 377-390.