[1] CLAPIER C R, CAIRNS B R. The biology of chromatin remodeling complexes [J]. Annu Rev Biochem, 2009, 78: 273-304.
[2] CLAPIER C R, IWASA J, CAIRNS B R, et al. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes [J]. Nat Rev Mol Cell Biol, 2017, 18(7): 407-422.
[3] NEIGEBORN L, CARLSON M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae [J]. Genetics, 1984, 108(4): 845-858.
[4] STERN M, JENSEN R, HERSKOWITZ I. Five SWI genes are required for expression of the HO gene in yeast [J]. J Mol Biol, 1984, 178(4): 853-868.
[5] GUO J, CAI G, LI Y Q, et al. Comprehensive characterization of three classes of Arabidopsis SWI/SNF chromatin remodelling complexes [J]. Nat Plants, 2022, 8(12): 1423-1439.
[6] FU W, YU Y, SHU J, et al. Organization, genomic targeting, and assembly of three distinct SWI/SNF chromatin remodeling complexes in Arabidopsis [J]. Plant Cell, 2023, 35(7): 2464-2483.
[7] SHANG J Y, HE X J. Chromatin-remodeling complexes: conserved and plant-specific subunits in Arabidopsis [J]. J Integr Plant Biol, 2022, 64(2): 499-515.
[8] BEZHANI S, WINTER C, HERSHMAN S, et al. Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED [J]. Plant Cell, 2007, 19(2): 403-416.
[9] SANG Y, SILVA-ORTEGA C O, WU S, et al. Mutations in two noncanonical Arabidopsis SWI2/SNF2 chromatin remodeling ATPases cause embryogenesis and stem cell maintenance defects [J]. Plant J, 2012, 72(6): 1000-1014.
[10] YU Y, LIANG Z, SONG X, et al. BRAHMA-interacting proteins BRIP1 and BRIP2 are core subunits of Arabidopsis SWI/SNF complexes [J]. Nat Plants, 2020, 6(8): 996-1007.
[11] JARONCZYK K, SOSNOWSKA K, ZABOROWSKI A, et al. Bromodomain-containing subunits BRD1, BRD2, and BRD13 are required for proper functioning of SWI/SNF complexes in Arabidopsis [J]. Plant Commun, 2021, 2(4): 100174.
[12] YU Y, FU W, XU J, et al. Bromodomain-containing proteins BRD1, BRD2, and BRD13 are core subunits of SWI/SNF complexes and vital for their genomic targeting in Arabidopsis [J]. Mol Plant, 2021, 14(6): 888-904.
[13] DIEGO-MARTIN B, PÉREZ-ALEMANY J, CANDELA-FERRE J, et al. The TRIPLE PHD FINGERS proteins are required for SWI/SNF complex-mediated +1 nucleosome positioning and transcription start site determination in Arabidopsis [J]. Nucleic Acids Res, 2022, 50(18): 10399-10417.
[14] BIELUSZEWSKI T, PRAKASH S, ROULÉ T, et al. The role and activity of SWI/SNF chromatin remodelers [J]. Annu Rev Plant Biol, 2023, 74: 139-163.
[15] SHU J, CHEN C, LI C, et al. Genome-wide occupancy of Arabidopsis SWI/SNF chromatin remodeler SPLAYED provides insights into its interplay with its close homolog BRAHMA and Polycomb proteins [J]. Plant J, 2021, 106(1): 200-213.
[16] LI C, GU L, GAO L, et al. Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis [J]. Nat Genet, 2016, 48(6): 687-693.
[17] ARCHACKI R, YATUSEVICH R, BUSZEWICZ D, et al. Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression [J]. Nucleic Acids Res, 2017, 45(6): 3116-3129.
[18] SHU J, DING N, LIU J, et al. Transcription elongator SPT6L regulates the occupancies of the SWI2/SNF2 chromatin remodelers SYD/BRM and nucleosomes at transcription start sites in Arabidopsis [J]. Nucleic Acids Res, 2022, 50(22): 12754-12767.
[19] BUSZEWICZ D, ARCHACKI R, PALUSINSKI A, et al. HD2C histone deacetylase and a SWI/SNF chromatin remodelling complex interact and both are involved in mediating the heat stress response in Arabidopsis [J]. Plant Cell and Environ, 2016, 39(10): 2108-2122.
[20] YANG J, YUAN L, YEN M-R, et al. SWI3B and HDA6 interact and are required for transposon silencing in Arabidopsis [J]. Plant J, 2020, 102(4): 809-822.
[21] ZHU Y, ROWLEY M J, BÖHMDORFER G, et al. A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing [J]. Mol Cell, 2013, 49(2): 298-309.
[22] LIU Z W, ZHOU J X, HUANG H W, et al. Two components of the RNA-directed DNA methylation pathway associate with MORC6 and silence loci targeted by MORC6 in Arabidopsis [J]. PLoS Genet, 2016, 12(5): e1006026.
[23] YANG T, WANG D, TIAN G, et al. Chromatin remodeling complexes regulate genome architecture in Arabidopsis [J]. Plant Cell, 2022, 34(7): 2638-2651.
[24] WANG Z, MA Z, CASTILLO-GONZALEZ C, et al. SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via Serrate to impede miRNA production [J]. Nature, 2018, 557(7706): 516-521.
[25] TSUKIYAMA T, DANIEL C, TAMKUN J, et al. ISWI, a member of the SWl2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor [J]. Cell, 1995, 83(6): 1021-1026.
[26] TSUKIYAMA T, WU C. Purification and properties of an ATPdependent nucleosome remodeling factor [J]. Cell, 1995, 83(6): 1011-1020.
[27] TOTO M, D'ANGELO G, CORONA D F. Regulation of ISWI chromatin remodelling activity [J]. Chromosoma, 2014, 123(1/2): 91-102.
[28] DIRSCHERL S S, KREBS J E. Functional diversity of ISWI complexes [J]. Biochem Cell Biol, 2004, 82(4): 482-489.
[29] MATHEW R P, MISHRA R K, PANDEY S M. ISWI chromatin remodeling complexes: composition and regulation perspectives [J]. J Sci Res, 2018, 62: 133-145.
[30] KNIZEWSKI L, GINALSKI K, JERZMANOWSKI A. Snf2 proteins in plants: gene silencing and beyond [J]. Trends Plant Sci, 2008, 13(10): 557-565.
[31] LI G, LIU S, WANG J, et al. ISWI proteins participate in the genome-wide nucleosome distribution in Arabidopsis [J]. Plant J, 2014, 78(4): 706-714.
[32] LI G, ZHANG J, LI J, et al. Imitation Switch chromatin remodeling factors and their interacting RINGLET proteins act together in controlling the plant vegetative phase in Arabidopsis [J]. Plant J, 2012, 72(2): 261-270.
[33] SMACZNIAK C, IMMINK R G, MUIÑO J M, et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development [J]. Proc Natl Acad Sci USA, 2012, 109(5): 1560-1565.
[34] YAMAGUCHI N, HUANG J, TATSUMI Y, et al. Chromatinmediated feed-forward auxin biosynthesis in floral meristem determinacy [J]. Nat Commun, 2018, 9(1): 5290.
[35] LIU H, LI J, XU Y, et al. ISWI chromatin remodeling factors repress PAD4-mediated plant immune responses in Arabidopsis [J]. Biochem Biophys Res Commun, 2021, 583: 63-70.
[36] TAN L M, LIU R, GU B W, et al. Dual recognition of H3K4me3 and DNA by the ISWI component ARID5 regulates the floral transition in Arabidopsis [J]. Plant Cell, 2020, 32(7): 2178-2195.
[37] GOODWIN L R, PICKETTS D J . The r o le of ISWI chromatin remodeling complexes in brain development and neurodevelopmental disorders [J]. Mol Cell Neurosci, 2018, 87: 55-64.
[38] DONG J, GAO Z, LIU S, et al. SLIDE, the protein interacting domain of Imitation Switch remodelers, binds DDT-domain proteins of different subfamilies in chromatin remodeling complexes [J]. J Integr Plant Biol, 2013, 55(10): 928-937.
[39] SUN X, FENG P, XU X, et al. A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus [J]. Nat Commun, 2011, 2: 477.
[40] ZHAO Y, JIANG T, LI L, et al. The chromatin remodeling complex imitation of switch controls stamen filament elongation by promoting jasmonic acid biosynthesis in Arabidopsis [J]. J Genet Genomics, 2021, 48(2): 123-133.
[41] ZHANG Q, WANG Z, LU X, et al. DDT-RELATED PROTEIN4-IMITATION SWITCH alters nucleosome distribution to relieve transcriptional silencing in Arabidopsis [J]. Plant Cell, 2023, 35(8): 3109-3126.
[42] GU B W, TAN L M, ZHANG C J, et al. FHA2 is a plant-specific ISWI subunit responsible for stamen development and plant fertility [J]. J Integr Plant Biol, 2020, 62(11): 1703-1716.
[43] LUO Y X, HOU X M, ZHANG C J, et al. A plant-specific SWR1 chromatin-remodeling complex couples histone H2A.Z deposition with nucleosome sliding [J]. EMBO J, 2020, 39(7): e102008.
[44] MIZUGUCHI G, SHEN X, LANDRY J, et al. ATP-driven exchange of histone H2A.Z variant catalyzed by SWR1 chromatin remodeling complex [J]. Science, 2004, 303(5656): 343-348.
[45] PAPAMICHOS-CHRONAKIS M, WATANABE S, RANDO O J, et al. Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity [J]. Cell, 2011, 144(2): 200-213.
[46] NIE W F, LEI M, ZHANG M, et al. Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in Arabidopsis [J]. Proc Natl Acad Sci USA, 2019, 116(33): 16641-16650.
[47] POTOK M E, WANG Y, XU L, et al. Arabidopsis SWR1-associated protein methyl-CpG-binding domain 9 is required for histone H2A.
Z deposition [J]. Nat Commun, 2019, 10(1): 3352.
[48] SIJACIC P, HOLDER D H, BAJIC M, et al. Methyl-CpG-binding domain 9 (MBD9) is required for H2A.Z incorporation into chromatin at a subset of H2A.Z-enriched regions in the Arabidopsis genome [J]. PLoS Genet, 2019, 15(8): e1008326.
[49] TAN L M, ZHANG C J, HOU X M, et al. The PEAT protein complexes are required for histone deacetylation and heterochromatin silencing [J]. EMBO J, 2018, 37(19): e98770.
[50] WU C J, LIU Z Z, WEI L, et al. Three functionally redundant plant-specific paralogs are core subunits of the SAGA histone acetyltransferase complex in Arabidopsis [J]. Mol Plant, 2021, 14(7): 1071-1087.
[51] SCACCHETTI A, BECKER P B. Variation on a theme: Evolutionary strategies for H2A.Z exchange by SWR1-type remodelers [J]. Curr Opin Cell Biol, 2021, 70: 1-9.
[52] NOH Y-S, AMASINO R M. PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis [J]. Plant Cell, 2003, 15(7): 1671-1682.
[53] WANG J, GAO S, PENG X, et al. Roles of the INO80 and SWR1 chromatin remodeling complexes in plants [J]. Int J Mol Sci, 2019, 20(18): 4591.
[54] SURA W, KABZA M, KARLOWSKI W M, et al. Dual role of the histone variant H2A.Z in transcriptional regulation of stressresponse genes [J]. Plant Cell, 2017, 29(4): 791-807.
[55] QIN Y, ZHAO L, SKAGGS M I, et al. ACTIN-RELATED PROTEIN6 regulates female meiosis by modulating meiotic gene expression in Arabidopsis [J]. Plant Cell, 2014, 26(4): 1612-1628.
[56] XU M, LEICHTY A R, HU T, et al. H2A.Z promotes the transcription of MIR156A and MIR156C in Arabidopsis by facilitating the deposition of H3K4me3 [J]. Development, 2018, 145(2): dev152868.
[57] DEAL R B, TOPP C N, MCKINNEY E C, et al. Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z [J]. Plant Cell, 2007, 19(1): 74-83.
[58] MARCH-DÍAZ R, GARCÍA-DOMÍNGUEZ M, LOZANO-JUSTE J, et al. Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis [J]. Plant J, 2008, 53(3): 475-487.
[59] GÓMEZ-ZAMBRANO Á, CREVILLÉN P, FRANCO-ZORRILLA J M, et al. Arabidopsis SWC4 binds DNA and recruits the SWR1 complex to modulate histone H2A.Z deposition at key regulatory genes [J]. Mol Plant, 2018, 11(6): 815-832.
[60] WU J, YANG Y, WANG J, et al. Histone chaperones AtChz1A and AtChz1B are required for H2A.Z deposition and interact with the SWR1 chromatin-remodeling complex in Arabidopsis thaliana [J]. New Phytol, 2023, 239(1): 189-207.
[61] CHEN L, CAI Y, JIN J, et al. Subunit organization of the human INO80 chromatin remodeling complex: an evolutionarily conserved core complex catalyzes ATP-dependent nucleosome remodeling [J]. J Biol Chem, 2011, 286(13): 11283-11289.
[62] YANG C, YIN L, XIE F, et al. AtINO80 represses photomorphogenesis by modulating nucleosome density and H2A.Z incorporation in lightrelated genes [J]. Proc Natl Acad Sci USA, 2020, 117(52): 33679-33688.
[63] ZANDER M, WILLIGE B C, HE Y, et al. Epigenetic silencing of a multifunctional plant stress regulator [J]. eLife, 2019, 8: e47835.
[64] XUE M, ZHANG H, ZHAO F, et al. The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis [J]. Mol Plant, 2021, 14(11): 1799-1813.
[65] ZHANG C, CAO L, RONG L, et al. The chromatin-remodeling factor AtINO80 plays crucial roles in genome stability maintenance and in plant development [J]. Plant J, 2015, 82(4): 655-668.
[66] SHANG J Y, LU Y J, CAI X W, et al. COMPASS functions as a module of the INO80 chromatin remodeling complex to mediate histone H3K4 methylation in Arabidopsis [J]. Plant Cell, 2021, 33(10): 3250-3271.
[67] MARFELLA C G, IMBALZANO A N. The CHD family of chromatin remodelers [J]. Mutat Res, 2007, 618(1/2): 30-40.
[68] WOODAGE T, BASRAI M A, BAXEVANIS A D, et al. Characterization of the CHD family of proteins [J]. Proc Natl Acad Sci USA, 1997, 94(21): 11472-11477.
[69] FLAUS A, MARTIN D M, BARTON G J, et al. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs [J]. Nucleic Acids Res, 2006, 34(10): 2887-2905.
[70] BOWEN N J, FUJITA N, KAJITA M, et al. Mi-2/NuRD: multiple complexes for many purposes [J]. Biochim Biophys Acta, 2004, 1677(1/2/3): 52-57.
[71] KOLLA V, NARAPARAJU K, ZHUANG T, et al. The tumour suppressor CHD5 forms a NuRD-type chromatin remodelling complex [J]. Biochem J, 2015, 468(2): 345-352.
[72] NITARSKA J, SMITH J G, SHERLOCK W T, et al. A functional switch of NuRD chromatin remodeling complex subunits regulates mouse cortical development [J]. Cell Rep, 2016, 17(6): 1683-1698.
[73] PRAY-GRANT M G, DANIEL J A, SCHIELTZ D, et al. CHD1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation [J]. Nature, 2005, 433(7024): 434-438.
[74] TRAN H G, STEGER D J, IYER V R, et al. The chromo domain protein chd1p from budding yeast is an ATP-dependent chromatinmodifying factor [J]. EMBO J, 2000, 19(10): 2323-2331.
[75] HU Y, LAI Y, ZHU D. Transcription regulation by CHD proteins to control plant development [J]. Front Plant Sci, 2014, 5: 223.
[76] JING Y, YANG Z, YANG R, et al. PKL is stabilized by MMS21 to negatively regulate Arabidopsis drought tolerance through directly repressing AFL1 transcription [J]. New Phytol, 2023, 239(3): 920-935.
[77] OGAS J, CHENG J C, SUNG Z R, et al. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant [J]. Science, 1997, 277(5322): 91-94.
[78] LIANG Z, YUAN L, XIONG X, et al. The transcriptional repressors VAL1 and VAL2 mediate genome-wide recruitment of the CHD3 chromatin remodeler PICKLE in Arabidopsis [J]. Plant Cell, 2022, 34(10): 3915-3935.
[79] ÖTVÖS K, MISKOLCZI P, MARHAV† P, et al. Pickle recruits retinoblastoma related 1 to control lateral root formation in Arabidopsis [J]. Int J Mol Sci, 2021, 22(8): 3862.
[80] FURUTA K, KUBO M, SANO K, et al. The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli [J]. Plant Cell Physiol, 2011, 52(4): 618-628.
[81] JING Y, ZHANG D, WANG X, et al. Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation [J]. Plant Cell, 2013, 25(1): 242-256.
[82] ZHANG D, JING Y, JIANG Z, et al. The chromatin-remodeling factor PICKLE integrates brassinosteroid and gibberellin signaling during skotomorphogenic growth in Arabidopsis [J]. Plant Cell, 2014, 26(6): 2472-2485.
[83] JING Y, GUO Q, LIN R. The chromatin-remodeling factor PICKLE antagonizes Polycomb repression of FT to promote flowering [J]. Plant Physiol, 2019, 181(2): 656-668.
[84] JING Y, GUO Q, ZHA P, et al. The chromatin-remodelling factor PICKLE interacts with CONSTANS to promote flowering in Arabidopsis [J]. Plant Cell Environ, 2019, 42(8): 2495-2507.
[85] HO K K, ZHANG H, GOLDEN B L, et al. PICKLE is a CHD subfamily II ATP-dependent chromatin remodeling factor [J]. Biochim Biophys Acta, 2013, 1829(2): 199-210.
[86] CARTER B, BISHOP B, HO K K, et al. The chromatin remodelers PKL and PIE1 act in an epigenetic pathway that determines H3K27me3 homeostasis in Arabidopsis [J]. Plant Cell, 2018, 30(6): 1337-1352.
[87] ZHANG H, RIDER JR S D, HENDERSON J T, et al. The CHD3 remodeler PICKLE promotes trimethylation of histone H3 lysine 27 [J]. J Biol Chem, 2008, 283(33): 22637-22648.
[88] HU Y, LIU D, ZHONG X, et al. CHD3 protein recognizes and regulates methylated histone H3 lysines 4 and 27 over a subset of targets in the rice genome [J]. Proc Natl Acad Sci USA, 2012, 109(15): 5773-5778.
[89] ZHA P, JING Y, XU G, et al. PICKLE chromatin-remodeling factor controls thermosensory hypocotyl growth of Arabidopsis [J]. Plant Cell Environ, 2017, 40(10): 2426-2436.
[90] HU T, MANUELA D, HINSCH V, et al. PICKLE associates with histone deacetylase 9 to mediate vegetative phase change in Arabidopsis [J]. New Phytol, 2022, 235(3): 1070-1081.
[91] YANG R, ZHENG Z, CHEN Q, et al. The developmental regulator PKL is required to maintain correct DNA methylation patterns at RNAdirected DNA methylation loci [J]. Genome Biol, 2017, 18(1): 103.
[92] SHEN Y, DEVIC M, LEPINIEC L, et al. Chromodomain, helicase and DNA-binding CHD1 protein, CHR5, are involved in establishing active chromatin state of seed maturation genes [J]. Plant Biotechnol J, 2015, 13(6): 811-820.
[93] ZOU B, SUN Q, ZHANG W, et al. The Arabidopsis chromatinremodeling factor CHR5 regulates plant immune responses and nucleosome occupancy [J]. Plant Cell Physiol, 2017, 58(12): 2202-2216.