[1] MAIMAN T H. Stimulated optical radiation in ruby [J]. Nature, 1960, 187: 493-494.
[2] FRANKEN P A, HILL A E, PETERS C W, et al. Generation of optical harmonics [J]. Phys Rev Lett, 1961, 7(4): 118-119.
[3] The Nobel Prize Organization. The Nobel prize in Physics 1981 [EB/OL]. [2024-02-06]. https://www.nobelprize.org/prizes/Physics /1981/summary/.
[4] DU Q, SUPERFINE R, FREYSZ E, et al. Vibrational spectroscopy of water at the vapor/water interface [J]. Phys Rev Lett, 1993, 70(15): 2313-2316.
[5] HARTER J W, ZHAO Z Y, YAN J Q, et al. A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2Re2O7 [J]. Science, 2017, 356(6335): 295-299.
[6] ROBEL I, SUBRAMANIAN V, KUNO M, et al. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films [J]. J Am Chem Soc, 2006, 128(7): 2385-2393.
[7] BEAUREPAIRE E, MERLE J, DAUNOIS A, et al. Ultrafast spin dynamics in ferromagnetic nickel [J]. Phys Rev Lett, 1996, 76(22): 4250-4253.
[8] KIRILYUK A, KIMEL A V, RASING T. Ultrafast optical manipulation of magnetic order [J]. Rev Mod Phys, 2010, 82(3): 2731-2784.
[9] KAMPFRATH T, BATTIATO M, MALDONADO P, et al. Terahertz spin current pulses controlled by magnetic heterostructures [J]. Nat Nanotechnol, 2013, 8(4): 256-260.
[10] DANTUS M, ROSKER M J, ZEWAIL A H. Real-time femtosecond probing of transition-states in chemical-reactions [J]. Journal of Chemical Physics, 1987, 87(4): 2395-2397.
[11] NUSS M C, ZINTH W, KAISER W, et al. Femtosecond spectroscopy of the first events of the photochemical cycle in bacteriorhodopsin [J]. Chem Phys Lett, 1985, 117(1): 1-7.
[12] MATHIES R A, BRITO CRUZ C H, POLLARD W T, et al. Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin [J]. Science, 1988, 240(4853): 777-779.
[13] KUKURA P, MCCAMANT D W, YOON S, et al. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman [J]. Science, 2005, 310(5750): 1006-1009.
[14] STRICKLAND D, MOUROU G. Compression of amplified chirped optical pulses [J]. Opt Commun, 1985, 56(3): 219-221.
[15] SQUIER J, HARTER D, SALIN F, et al. 100-fs pulse generation and amplification in Ti: Al2O3 [J]. Opt Lett, 1991, 16(5): 324.
[16] SHEN Y R. The principles of nonlinear optics [M]. New York: Wiley, 2003.
[17] LI Y, RAO Y, MAK K F, et al. Probing symmetry properties of fewlayer MoS2 and h-BN by optical second-harmonic generation [J]. Nano Lett, 2013, 13(7): 3329-3333.
[18] SUN Z, YI Y, SONG T, et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3 [J]. Nature, 2019, 572(7770): 497-501.
[19] CHU H, ROH C J, ISLAND J O, et al. Linear magnetoelectric phase in ultrathin MnPS3 probed by optical second harmonic generation [J]. Phys Rev Lett, 2020, 124(2): 027601.
[20] BLOEMBERGEN N, PERSHAN P S. Light waves at the boundary of nonlinear media [J]. Phys Rev, 1962, 128(2): 606-622.
[21] OSTROVERKHOV V, WAYCHUNAS G A, SHEN Y R. New information on water interfacial structure revealed by phasesensitive surface spectroscopy [J]. Phys Rev Lett, 2005, 94(4): 046102.
[22] STIOPKIN I V, WEERAMAN C, PIENIAZEK P A, et al. Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy [J]. Nature, 2011, 474(7350): 192-195.
[23] NIHONYANAGI S, YAMAGUCHI S, TAHARA T. Counterion effect on interfacial water at charged interfaces and its relevance to the Hofmeister series [J]. J Am Chem Soc, 2014, 136(17): 6155-6158.
[24] WEN Y C, ZHA S, LIU X, et al. Unveiling microscopic structures of charged water interfaces by surface-specific vibrational spectroscopy [J]. Phys Rev Lett, 2016, 116: 016101.
[25] HSIEH C S, CAMPEN R K, OKUNO M, et al. Mechanism of vibrational energy dissipation of free OH groups at the air-water interface [J]. Proc Natl Acad Sci USA, 2013, 110(47): 18780-18785.
[26] XIAO S, FIGGE F, STIRNEMANN G, et al. Orientational dynamics of water at an extended hydrophobic interface [J]. J Am Chem Soc, 2016, 138(17): 5551-5560.
[27] FANG C, FRONTIERA R R, TRAN R, et al. Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy [J]. Nature, 2009, 462(7270): 200-204.
[28] MCCAMANT D W, KUKURA P, MATHIES R A. Femtosecond time-resolved stimulated Raman spectroscopy: application to the ultrafast internal conversion in β-carotene [J]. J Phys Chem A, 2003, 107(40): 8208-8214.
[29] HANNAH D C, BROWN K E, YOUNG R M, et al. Direct measurement of lattice dynamics and optical phonon excitation in semiconductor nanocrystals using femtosecond stimulated Raman spectroscopy [J]. Phys Rev Lett, 2013, 111(10): 107401.
[30] KUKURA P, MCCAMANT D W, MATHIES R A. Femtosecond stimulated Raman spectroscopy [J]. Annu Rev Phys Chem, 2007, 58: 461-488.
[31] LIU W, HAN F, SMITH C, et al. Ultrafast conformational dynamics of pyranine during excited state proton transfer in aqueous solution revealed by femtosecond stimulated Raman spectroscopy [J]. J Phys Chem B, 2012, 116(35): 10535-10550.
[32] 赵晓辉, 马菲, 吴义室, 等. 飞秒时间分辨拉曼光谱用于研究β-胡萝卜素单重激发态内转换和振动弛豫过程[J]. 物理学报, 2008, 57(1): 298-306.
[33] MCCAMANT D W, KUKURA P, MATHIES R A. Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin [J]. J Phys Chem B, 2005, 109(20): 10449-10457.
[34] NOGLY P, WEINERT T, JAMES D, et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond X-ray laser [J]. Science, 2018, 361(6398): eaat0094.
[35] LAM R K, RAJ S L, PASCAL T A, et al. Soft X-ray second harmonic generation as an interfacial probe [J]. Phys Rev Lett, 2018, 120(2): 023901.
[36] SCHWARTZ C P, RAJ S L, JAMNUCH S, et al. Angstrom-resolved interfacial structure in buried organic-inorganic junctions [J]. Phys Rev Lett, 2021, 127(9): 096801.
[37] WOODAHL C, JAMNUCH S, AMADO A, et al. Probing lithium mobility at a solid electrolyte surface [J]. Nat Mater, 2023, 22(7): 848-852.
[38] HORIO M, SUMI T, BULLOCK J, et al. Detecting driving potentials at the buried SiO2 nanolayers in solar cells by chemicalselective nonlinear X-ray spectroscopy [J]. Appl Phys Lett, 2023, 123(3): 031602.
[39] SUMI T, HORIO M, SENOO T, et al. Observing soft X-ray magnetization-induced second harmonic generation at a heterojunction interface [J]. Appl Phys Lett, 2023, 122(17): 171601.
[40] ZHAO L, TORCHINSKY D H, CHU H, et al. Evidence of an odd parity hidden order in a spin–orbit coupled correlated iridate [J]. Nat Phys, 2016, 12: 32-36.
[41] SEYLER K L, DE LA TORRE A, PORTER Z, et al. Spin-orbitenhanced magnetic surface second-harmonic generation in Sr2IrO4[J]. Phys Rev B, 2020, 102(20): 201113.
[42] UZUNDAL C B, JAMNUCH S, BERGER E, et al. Polarizationresolved extreme-ultraviolet second-harmonic generation from LiNbO3 [J]. Phys Rev Lett, 2021, 127(23): 237402.
[43] EISENBERGER P, MCCALL S L. X-ray parametric conversion [J]. Phys Rev Lett, 1971, 26(12): 684.
[44] FREUND I, LEVINE B F. Parametric conversion of X-rays [J]. Physical Review Letters, 1969, 23(15): 854.
[45] SHWARTZ S, FUCHS M, HASTINGS J B, et al. X-ray second harmonic generation [J]. Phys Rev Lett, 2014, 112(16): 163901.
[46] TAMASAKU K, SAWADA K, NISHIBORI E, et al. Visualizing the local optical response to extreme-ultraviolet radiation with a resolution of λ/380 [J]. Nat Phys, 2011, 7: 705-708.
[47] GLOVER T E, FRITZ D M, CAMMARATA M, et al. X-ray and optical wave mixing [J]. Nature, 2012, 488(7413): 603-608.
[48] SJODIN T, PETEK H, DAI H L. Ultrafast carrier dynamics in silicon: a two-color transient reflection grating study on a (111) surface [J]. Phys Rev Lett, 1998, 81(25): 5664-5667.
[49] KORALEK J D, WEBER C P, ORENSTEIN J, et al. Emergence of the persistent spin helix in semiconductor quantum wells [J]. Nature, 2009, 458(7238): 610-613.
[50] BENCIVENGA F, CUCINI R, CAPOTONDI F, et al. Four-wave mixing experiments with extreme ultraviolet transient gratings [J]. Nature, 2015, 520(7546): 205-208.
[51] FOGLIA L, CAPOTONDI F, MINCIGRUCCI R, et al. First evidence of purely extreme-ultraviolet four-wave mixing [J]. Phys Rev Lett, 2018, 120(26): 263901.
[52] BENCIVENGA F, MINCIGRUCCI R, CAPOTONDI F, et al. Nanoscale transient gratings excited and probed by extreme ultraviolet femtosecond pulses [J]. Sci Adv, 2019, 5(7): eaaw5805.
[53] KSENZOV D, MAZNEV A A, UNIKANDANUNNI V, et al. Nanoscale transient magnetization gratings created and probed by femtosecond extreme ultraviolet pulses [J]. Nano Lett, 2021, 21(7): 2905-2911.
[54] BENCIVENGA F, CAPOTONDI F, FOGLIA L, et al. Extreme ultraviolet transient gratings [J]. Adv Phys X, 2023, 8(1): 2220363. DOI: 10.1080/23746149.2023.2220363.
[55] MINCIGRUCCI R, FOGLIA L, NAUMENKO D, et al. Advances in instrumentation for FEL-based four-wave-mixing experiments [J]. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 907: 132-148.
[56] MI K, CAO W, XU H, et al. Perturbed ac stark effect for attosecond optical-waveform sampling [J]. Phys Rew Appl, 2020, 13(1): 14032.
[57] TAO W K, WANG L, SONG P, et al. Enhanced extreme ultraviolet free induction decay emission assisted by attosecond pulses [J]. Chin Phys Lett, 2023, 40(6): 43-47.
[58] DING T, REBHOLZ M, AUFLEGER L, et al. Nonlinear coherence effects in transient-absorption ion spectroscopy with stochastic extreme-ultraviolet free-electron laser pulses [J]. Phys Rev Lett, 2019, 123(10): 103001.
[59] OTT C, AUFLEGER L, DING T, et al. Strong-field extremeultraviolet dressing of atomic double excitation [J]. Phys Rev Lett, 2019, 123(16): 163201.
[60] LOH Z H, DOUMY G, ARNOLD C, et al. Observation of the fastest chemical processes in the radiolysis of water [J]. Science, 2020, 367(6474): 179-182.
[61] OTT C, KALDUN A, RAITH P, et al. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control [J]. Science, 2013, 340(6133): 716-720.
[62] WANG H, CHINI M, CHEN S, et al. Attosecond time-resolved autoionization of argon [J]. Phys Rev Lett, 2010, 105(14): 143002.
[63] GAO J, ZHENG Y, WU J, et al. High-order harmonic generation in X-ray range from laser induced noble gas multivalent ions [EB/OL]. (2022-03-06)[2024-03-01]. arXiv: 2203.14066. http://arxiv.org/abs/2203.14066
[64] PENG P, MARCEAU C, VILLENEUVE D M. Attosecond imaging of molecules using high harmonic spectroscopy [J]. Nat Rev Phys, 2019, 1: 144-155.
[65] GOULIELMAKIS E, YAKOVLEV V S, CAVALIERI A L, et al. Attosecond control and measurement: lightwave electronics [J]. Science, 2007, 317(5839): 769-775.
[66] MAIRESSE Y, DE BOHAN A, FRASINSKI L J, et al. Attosecond synchronization of high-harmonic soft x-rays [J]. Science, 2003, 302(5650): 1540-1543.
[67] GOULIELMAKIS E, LOH Z H, WIRTH A, et al. Real-time observation of valence electron motion [J]. Nature, 2010, 466(7307): 739-743.
[68] PENG P, MARCEAU C, HERVÉ M, et al. Symmetry of molecular Rydberg states revealed by XUV transient absorption spectroscopy [J]. Nat Commun, 2019, 10(1): 5269.
[69] PENG P, MI Y, LYTOVA M, et al. Coherent control of ultrafast extreme ultraviolet transient absorption [J]. Nat Photonics, 2022, 16: 45-51.
[70] SUN M, JIANG Z, FU Y, et al. Observation of refractive index line shape in ultrafast XUV transient absorption spectroscopy [J]. Ultrafast Science, 2023, 3: 0029.
[71] KRAUSZ F, IVANOV M. Attosecond physics [J]. Rev Mod Phys, American Physical Society, 2009, 81(1): 163-234.
[72] CORKUM P B, KRAUSZ F. Attosecond science [J]. Nat Phys, 2007, 3: 381-387.
[73] IVANOV M, SPANNER M, SMIRNOVA O. Anatomy of strong field ionization [J]. J Mod Opt, 2005, 52: 165-184.
[74] TIAN Y, LIU J, BAI Y, et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation [J]. Nat Photonics, 2017, 11: 242-246.
[75] YAO J, ZENG B, XU H, et al. High-brightness switchable multiwavelength remote laser in air [J]. Phys Rev A, 2011, 84(5): 051802.
[76] CORKUM P B. Plasma perspective on strong field multiphoton ionization [J]. Phys Rev Lett, 1993, 71(13): 1994-1997.
[77] CHINI M, ZHAO K, CHANG Z. The generation, characterization and applications of broadband isolated attosecond pulses [J]. Nat Photonics, 2014, 8: 178-186.
[78] GAUMNITZ T, JAIN A, PERTOT Y, et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEPstable mid-infrared driver [J]. Opt Express, 2017, 25(22): 27506-27518.
[79] CHINI M, ZHAO B, WANG H, et al. Subcycle ac stark shift of helium excited states probed with isolated attosecond pulses [J]. Phys Rev Lett, 2012, 109(7): 073601.
[80] PERTOT Y, SCHMIDT C, MATTHEWS M, et al. Time-resolved X-ray absorption spectroscopy with a water-window high-harmonic source [C]//2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/EuropeEQEC). Munich, Germany. IEEE, 2017: 1.
[81] ATTAR A R, BHATTACHERJEE A, PEMMARAJU C D, et al. Femtosecond X-ray spectroscopy of an electrocyclic ring-opening reaction [J]. Science, 2017, 356(6333): 54-59.
[82] BRESSLER C, CHERGUI M. Ultrafast X-ray absorption spectroscopy [J]. Chem Rev, 2004, 104(4): 1781-1812.
[83] MARQUES M A L, MAITRA N T, NOGUEIRA F M S, et al. Fundamentals of time-dependent density functional theory [M]. Heidelberg: Springer, 2012: 53-99.
[84] 彭佳伟, 谢宇, 胡德平, 等. 利用基于直接动力学的轨线面跳跃方法处理非绝热过程[J]. 物理化学学报, 2019, 35(1): 28-48.
[85] TULLY J. Molecular dynamics with electronic transitions [J]. J Chem Phys, 1990, 93: 1061-1071.
[86] PEMMARAJU C D. Valence and core excitons in solids from velocity-gauge real-time TDDFT with range-separated hybrid functionals: an LCAO approach [J]. Comput Condens Matter, 2019, 18: e00348.
[87] TOULSON B W, BORGWARDT M, WANG H, et al. Probing ultrafast C-Br bond fission in the UV photochemistry of bromoform with core-to-valence transient absorption spectroscopy [J]. Struct Dyn, 2019, 6(5): 054304.
[88] MORZAN U N, VIDELA P E, SOLEY M B, et al. Vibronic dynamics of photodissociating ICN from simulations of ultrafast X-ray absorption spectroscopy [J]. Angew Chem Int Ed Engl, 2020, 59(45): 20044-20048.
[89] SCHNORR K, BHATTACHERJEE A, OOSTERBAAN K J, et al. Tracing the 267 nm-induced radical formation in dimethyl disulfide using time-resolved X-ray absorption spectroscopy [J]. J Phys Chem Lett, 2019, 10(6): 1382-1387.
[90] WANG H, ODELIUS M, PRENDERGAST D. A combined multireference pump-probe simulation method with application to XUV signatures of ultrafast methyl iodide photodissociation [J]. J Chem Phys, 2019, 151(12): 124106.
[91] DIESEN E, WANG H Y, SCHRECK S, et al. Ultrafast adsorbate excitation probed with subpicosecond-resolution X-ray absorption spectroscopy [J]. Phys Rev Lett, 2021, 127(1): 016802.
[92] OGASAWARA H, WANG H, GLADH J, et al. X-ray free electron laser studies of electron and phonon dynamics of graphene adsorbed on copper [J]. Phys Rev Materials, 2023, 7(2): 024005.