[1] XIE K, YANG Y. RNA-guided genome editing in plants using a CRISPR-Cas system [J]. Mol Plant, 2013, 6(6): 1975-1983.
[2] BEUMER K J, CARROLL D. Targeted genome engineering techniques in Drosophila [J]. Methods, 2014, 68(1): 29-37.
[3] DOUDNA J A, CHARPENTIER E. The new frontier of genome engineering with CRISPR-Cas9 [J]. Science, 2014, 346(6213): 1077-1086.
[4] GONZALES A P W, YEH J-R J. Cas9-based genome editing in zebrafish [M]//DOUDNA J A, SONTHEIMER E J. Use of CRISPR/Cas9, ZFNs, and TALENs in Generating Site-Specific Genome Alterations. Elsevier, 2014: 377-413.
[5] PELLETIER S, GINGRAS S, GREEN D R. Mouse genome engineering via CRISPR-Cas9 for study of immune function [J]. Immunity, 2015, 42(1): 18-27.
[6] BAUER D E, CANVER M C, ORKIN S H. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9 [J]. J Vis Exp, 2015(95): e52118.
[7] CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339(6121): 819-823.
[8] JANSEN R, VAN EMBDEN J D A, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes [J]. Mol Microbiol, 2002, 43(6): 1565-1575.
[9] HAFT D H, SELENGUT J, MONGODIN E F, et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes [J]. PLoS Computational Biology, 2005, 1(6): 474-483.
[10] MAKAROVA K S, HAFT D H, BARRANGOU R, et al. Evolution and classification of the CRISPR-Cas systems [J]. Nat Rev Microbiol, 2011, 9(6): 467-477.
[11] MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al. An updated evolutionary classification of CRISPR-Cas systems [J]. Nat Rev Microbiol, 2015, 13(11): 722-736.
[12] MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants [J]. Nat Rev Microbiol, 2020, 18(2): 67-83.
[13] WANG J Y, DOUDNA J A. CRISPR technology: a decade of genome editing is only the beginning [J]. Science, 2023, 379(6629): eadd8643.
[14] CSÖRGŐ B, LEÓN L M, CHAU-LY I J, et al. A compact Cascade Cas3 system for targeted genome engineering [J]. Nat Methods, 2020, 17(12): 1183-1190.
[15] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337(6096): 816-821.
[16] NAYAK D D, METCALF W W. Cas9-mediated genome editing in the methanogenic archaeon Methanosarcina acetivorans [J]. Proc Natl Acad Sci USA, 2017, 114(11): 2976-2981.
[17] JIANG W, ZHAO X, GABRIELI T, et al. Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters [J]. Nat Commun, 2015, 6: 8101.
[18] QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression [J]. Cell, 2013, 152(5): 1173-1183.
[19] GILBERT L A, LARSON M H, MORSUT L, et al. CRISPRmediated modular RNA-guided regulation of transcription in eukaryotes [J]. Cell, 2013, 154(2): 442-451.
[20] GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2 [J]. Science, 2017, 356(6336): 438-442.
[21] KLEINSTIVER B P, SOUSA A A, WALTON R T, et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing [J]. Nat Biotechnol, 2019, 37(3): 276-282.
[22] GUO L Y, BIAN J, DAVIS A E, et al. Multiplexed genome regulation in vivo with hyper-efficient Cas12a [J]. Nat Cell Biol, 2022, 24(4): 590-600.
[23] LI X, WANG Y, LIU Y, et al. Base editing with a Cpf1-cytidine deaminase fusion [J]. Nat Biotechnol, 2018, 36(4): 324-327.
[24] CHEN J S, MA E, HARRINGTON L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J]. Science, 2018, 360(6387): 436-439.
[25] LI S Y, CHENG Q X, LIU J K, et al. CRISPR-Cas12a has both cisand trans-cleavage activities on single-stranded DNA [J]. Cell Res, 2018, 28(4): 491-493.
[26] COX D B T, GOOTENBERG J S, ABUDAYYEH O O, et al. RNA editing with CRISPR-Cas13 [J]. Science, 2017, 358(6366): 1019-1027.
[27] FREIJE C A, MYHRVOLD C, BOEHM C K, et al. Programmable inhibition and detection of RNA viruses using Cas13 [J]. Mol Cell, 2019, 76(5): 826-837.e11.
[28] BARRANGOU R, DOUDNA J A. Applications of CRISPR technologies in research and beyond [J]. Nat Biotechnol, 2016, 34(9): 933-941.
[29] KOMOR A C, BADRAN A H, LIU D R. CRISPR-based technologies for the manipulation of eukaryotic genomes [J]. Cell, 2017, 168(1/2): 20-36.
[30] TENG X, SHI S. Optimization and development of CRISPR/Cas9 systems for genome editing [J]. Synthetic Biology Journal, 2023, 4(1): 67-85.
[31] LIU X, GALLAY C, KJOS M, et al. High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae [J]. Mol Syst Biol, 2017, 13(5): 931.
[32] WARMING S, COSTANTINO N, COURT D L, et al. Simple and highly efficient BAC recombineering using galK selection [J]. Nucleic Acids Res, 2005, 33(4): e36.
[33] 张昕哲, 甄珍. 利用CRISPR-Cas系统研究食源性致病菌的基因编辑与调控[J]. 科技通报, 2024, 40(5): 27-33.
[34] WANG Y, ZHANG Z T, SEO S O, et al. Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable “clean” mutant selection in clostridium beijerinckii as an example [J]. ACS Synth Biol, 2016, 5(7): 721-732.
[35] HONG W, ZHANG J, CUI G, et al. Multiplexed CRISPR-Cpf1-mediated genome editing in Clostridium difficile toward the understanding of pathogenesis of C. difficile infection [J]. ACS Synth Biol, 2018, 7(6): 1588-1600.
[36] DICARLO J E, NORVILLE J E, MALI P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J]. Nucleic Acids Res, 2013, 41(7): 4336-4343.
[37] MITSUI R, YAMADA R, OGINO H. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals [J]. World J Microbiol Biotechnol, 2019, 35(7): 111.
[38] HUANG H, ZHENG G, JIANG W, et al. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces [J]. Acta Biochim Biophys Sin, 2015, 47(4): 231-243.
[39] ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA targeting CRISPR effector [J]. Science, 2016, 353(6299): aaf5573.
[40] KLEINSTIVER B P, PATTANAYAK V, PREW M S, et al. Highfidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects [J]. Nature, 2016, 529(7587): 490-495.
[41] PETERS J M, COLAVIN A, SHI H, et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria [J]. Cell, 2016, 165(6): 1493-1506.
[42] WU J, CHENG Z H, MIN D, et al. CRISPRi system as an efficient, simple platform for rapid identification of genes involved in pollutant transformation by Aeromonas hydrophila [J]. Environ Sci Technol, 2020, 54(6): 3306-3315.
[43] LI J, TANG Q, LI Y, et al. Rediverting electron flux with an engineered CRISPR-ddAsCpf1 system to enhance the pollutant degradation capacity of Shewanella oneidensis [J]. Environ Sci Technol, 2020, 54(6): 3599-3608.
[44] HU J H, MILLER S M, GEURTS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity [J]. Nature, 2018, 556(7699): 57-63.
[45] KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage [J]. Nature, 2016, 533(7603): 420-424.
[46] CHENG L, MIN D, HE R L, et al. Developing a base-editing system to expand the carbon source utilization spectra of Shewanella oneidensis MR-1 for enhanced pollutant degradation [J]. Biotechnol Bioeng, 2020, 117(8): 2389-2400.
[47] ZHAO D, LI J, LI S, et al. Glycosylase base editors enable C-to-A and C-to-G base changes [J]. Nat Biotechnol, 2021, 39(1): 35-40.
[48] ANZALONE A V, KOBLAN L W, LIU D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors [J]. Nat Biotechnol, 2020, 38(7): 824-844.
[49] HE R L, WU J, CHENG Z H, et al. Biomolecular insights into extracellular pollutant reduction pathways of geobacter sulfurreducens using a base editor system [J]. Environ Sci Technol, 2022, 56(17): 12247-12256.
[50] GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A center dot T to G center dot C in genomic DNA without DNA cleavage [J]. Nature, 2018, 559(7681): 464-471.
[51] KIM Y B, KOMOR A C, LEVY J M, et al. Increasing the genometargeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions [J]. Nat Biotechnol, 2017, 35(4): 371-376.
[52] REES H A, KOMOR A C, YEH W H, et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery [J]. Nat Commun, 2017, 8: 15790.
[53] ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-andreplace genome editing without double-strand breaks or donor DNA [J]. Nature, 2019, 576(7785): 149-157.
[54] TONG Y, JØRGENSEN T S, WHITFORD C M, et al. A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing [J]. Nat Commun, 2021, 12(1): 5206.
[55] STRECKER J, LADHA A, GARDNER Z, et al. RNA-guided DNA insertion with CRISPR-associated transposases [J]. Science, 2019, 365(6448): 48-53.
[56] KLOMPE S E, VO P L H, HALPIN-HEALY T S, et al. Transposonencoded CRISPR-Cas systems direct RNA-guided DNA integration [J]. Nature, 2019, 571(7764): 219-225.
[57] VO P L H, RONDA C, KLOMPE S E, et al. CRISPR RNAguided integrases for high-efficiency, multiplexed bacterial genome engineering [J]. Nat Biotechnol, 2021, 39(4): 480-489.
[58] YANG S, ZHANG Y, XU J, et al. Orthogonal CRISPR-associated transposases for parallel and multiplexed chromosomal integration [J]. Nucleic Acids Res, 2021, 49(17): 10192-10202.
[59] MOORE C, PAPA L J III, SHOULDERS M D. A processive protein chimera introduces mutations across defined DNA regions in vivo [J]. J Am Chem Soc, 2018, 140(37): 11560-11564.
[60] ÁLVAREZ B, MENCÍA M, DE LORENZO V, et al. In vivo diversification of target genomic sites using processive base deaminase fusions blocked by dCas9 [J]. Nat Commun, 2020, 11(1): 6436.
[61] HALPERIN S O, TOU C J, WONG E B, et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window [J]. Nature, 2018, 560(7717): 248-252.
[62] SHMAKOV S, ABUDAYYEH O O, MAKAROVA K S, et al. Discovery and functional characterization of diverse class 2 CRISPR-cas systems [J]. Mol Cell, 2015, 60(3): 385-397.
[63] EAST-SELETSKY A, O'CONNELL M R, KNIGHT S C, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection [J]. Nature, 2016, 538(7624): 270-273.
[64] ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system [J]. Cell, 2015, 163(3): 759-771.
[65] WU Z, ZHANG Y, YU H, et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease [J]. Nat Chem Biol, 2021, 17(11): 1132-1138.
[66] YOSHIMI K, TAKESHITA K, YAMAYOSHI S, et al. CRISPRCas3-based diagnostics for SARS-CoV-2 and influenza virus [J]. iScience, 2022, 25(2): 103830.
[67] DMYTRENKO O, NEUMANN G C, HALLMARK T, et al. Cas12a2 elicits abortive infection through RNA-triggered destruction of dsDNA [J]. Nature, 2023, 613(7944): 588-594.
[68] BRAVO J P K, HALLMARK T, NAEGLE B, et al. RNA targeting unleashes indiscriminate nuclease activity of CRISPR-Cas12a2 [J]. Nature, 2023, 613(7944): 582-587.
[69] ÖZCAN A, KRAJESKI R, IOANNIDI E, et al. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11 [J]. Nature, 2021, 597(7878): 720-725.
[70] KATO K, OKAZAKI S, SCHMITT-ULMS C, et al. RNA-triggered protein cleavage and cell growth arrest by the type III-E CRISPR nuclease-protease [J]. Science, 2022, 378(6622): 882-889.
[71] STRECKER J, DEMIRCIOGLU F E, LI D, et al. RNA-activated protein cleavage with a CRISPR-associated endopeptidase [J]. Science, 2022, 378(6622): 874-881.
[72] PARDEE K, GREEN A A, TAKAHASHI M K, et al. Rapid, lowcost detection of Zika virus using programmable biomolecular components [J]. Cell, 2016, 165(5): 1255-1266.
[73] KWON S, SHIN H Y. Advanced CRISPR-cas effector enzymebased diagnostics for infectious diseases, including COVID-19 [J]. Life, 2021, 11(12): 1356.
[74] GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6 [J]. Science, 2018, 360(6387): 439-444.
[75] ACKERMAN C M, MYHRVOLD C, THAKKU S G, et al. Massively multiplexed nucleic acid detection with Cas13 [J]. Nature, 2020, 582(7811): 277-282.
[76] 陈墨岩, 祝诚. 基于CRISPR/Cas12a的生物传感平台的机制研究及应用[J]. 生物技术通报, 2024: 1-9.
[77] TIAN T, SHU B, JIANG Y, et al. An ultralocalized Cas13a assay enables universal and nucleic acid amplification-free singlemolecule RNA diagnostics [J]. ACS Nano, 2021, 15(1): 1167-1178.
[78] YUE H, SHU B, TIAN T, et al. Droplet Cas12a assay enables DNA quantification from unamplified samples at the single-molecule level [J]. Nano Lett, 2021, 21(11): 4643-4653.
[79] GANBAATAR U, LIU C. CRISPR-based COVID-19 testing: toward next-generation point-of-care diagnostics [J]. Front Cell Infect Microbiol, 2021, 11: 663949.
[80] FOZOUNI P, SON S, DÍAZ DE LEÓN DERBY M, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy [J]. Cell, 2021, 184(2): 323-333.e9.
[81] SHI K, XIE S, TIAN R, et al. A CRISPR-Cas autocatalysis-driven feedback amplification network for supersensitive DNA diagnostics [J]. Sci Adv, 2021, 7(5): eabc7802.
[82] LI L, LI S, WU N, et al. HOLMESv2: a CRISPR-Cas12bassisted platform for nucleic acid detection and DNA methylation quantitation [J]. ACS Synth Biol, 2019, 8(10): 2228-2237.
[83] JOUNG J, LADHA A, SAITO M, et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing [J]. N Engl J Med, 2020, 383(15): 1492-1494.
[84] LIN M, YUE H, TIAN T, et al. Glycerol additive boosts 100-fold sensitivity enhancement for one-pot RPA-CRISPR/Cas12a assay [J]. Anal Chem, 2022, 94(23): 8277-8284.
[85] YIN K, DING X, LI Z, et al. Dynamic aqueous multiphase reaction system for one-pot CRISPR-Cas12a-based ultrasensitive and quantitative molecular diagnosis [J]. Anal Chem, 2020, 92(12):
8561-8568.
[86] HU M, QIU Z, BI Z, et al. Photocontrolled crRNA activation enables robust CRISPR-Cas12a diagnostics [J]. Proc Natl Acad Sci USA, 2022, 119(26): e2202034119.
[87] LU S, TONG X, HAN Y, et al. Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a [J]. Nat Biomed Eng, 2022, 6(3): 286-297.
[88] CHENG Z H, LUO X Y, LIU D F, et al. Optimized antibiotic resistance genes monitoring scenarios promote sustainability of urban water cycle [J]. Environ Sci Technol, 2024, 58(22): 9636-9645.