纳米层状双氢氧化物(LDH)在干细胞命运调控中的研究进展及前景展望

学术   2025-01-15 12:01   上海  

撰文│汪世龙

编辑│毕紫娟

审校│汤红明


转载需获取授权,请至后台留言
全文5000余字,预计阅读22分钟

干细胞是一类具有自我更新和多向分化潜能的未分化细胞,已成为组织工程及干细胞谱系分化研究的重要方向。其中,干细胞的命运调控是其研究的核心问题之一,因为它直接决定了干细胞的定向分化能力及其在组织工程和再生医学中的实际应用前景。如何通过外界环境和分子机制调控干细胞命运,使其定向分化并应用于临床,是当前干细胞研究的关键课题。

大量研究表明,溶液介质和细胞外基质等对调控干细胞的生长和分化具有重要作用,并通过多种信号通路调控干细胞命运。近年来,生物材料的发展及应用为组织工程和再生医学领域带来了巨大机遇。目前,生物材料对干细胞命运的调控主要是利用材料的特殊组成和形貌结构等性质,通过物理化学信号刺激,打破干细胞的静止状态,进而达到调控干细胞命运的作用。在众多生物材料中,层状双氢氧化物(layered double hydroxide,LDH)作为一种生物可降解的无机纳米材料,在干细胞命运调控中展现出巨大应用潜力。本文就课题组在“LDH在干细胞命运调控中的应用”所取得的成果进行简要介绍。


一、LDH概述

LDH又称为水滑石或阴离子黏土,具有良好的正六边形片层结构,其结构通式为[M2+1-xM3+x(OH)2]x+(Am-x/m·nH2O;其中M2+为二价阳离子,包括Mg2+、Zn2+、Co2+、Mn2+等,M3+为三价阳离子,包括Al3+、Fe3+、Gd3+等,Am-为非骨架的可交换阴离子,包括如CO32-、Cl-、NO3-、SO42-等,x为三价阳离子占所有阳离子的摩尔比,值的大小一般在0.16~0.33。对于电荷补偿,正电荷层与可交换的层间阴离子平衡,形成以1∶1顺序排列的二维层状复合结构。利用LDH片层阳离子的可变性和层间阴离子的可交换性,可制备不同金属离子组成、不同层间阴离子及不同尺寸的各种结构。


独特的板层结构及电性决定了LDH的性质,使其在生物医学领域展现出诸多优点和应用潜能。

(1)生物相容性良好,不会对机体产生毒副作用。
(2)作为药物的载体,LDH特有的结构和粒径可以实现肿瘤组织的被动靶向。其板层结构可以提高药物在递送过程中的稳定性;表面的正电荷易与带负电的细胞膜结合,可有效携带药物进入靶细胞。

(3)可调节的元素组成,使得LDH除了运送药物和基因调控细胞之外,本身也会对细胞的命运产生影响。


近十年来,笔者所在课题组就LDH在胚胎干细胞(embryonic stem cells,ESC)、间充质干细胞(mesenchymal stem cells,MSC)、神经干细胞(neural stem cells,NSC)及肿瘤干细胞(cancer stem cells,CSC)等中的作用进行了系列探索,针对相关分子调控机制进行了研究。下面从LDH在ESC的干性维持、MSC的诱导分化、NSC的神经再生及对CSC的抑制等方面的作用进行介绍。


二、LDH调控干细胞的作用与机制研究

» LDH参与ESC命运调控

ESC在生物学研究及临床前研究中都有着广泛应用,如哺乳动物胚胎发育研究、疾病模型建立、药物筛选开发等。因此,如何准确地对ESC自我更新和分化进行调控,对干细胞的应用和研究至关重要。白血病抑制因子(leukaemia inhibitory factor,LIF)依赖的滋养层细胞培养体系是ESC体外扩增的传统方法,该体系操作过程烦琐、培养成本高。笔者所在课题组于2015年首次提出了LDH能够维持小鼠胚胎干细胞(mouse embryonic stem cells,mESC)的自我更新能力,发现阳离子为镁铝组成的LDH(Mg-Al LDH)能够在去除滋养层细胞和LIF的条件下维持mESC在体外扩增中的自我更新能力,且不损伤其向三胚层分化的潜能。该工作从细胞信号通路水平上就Mg-Al LDH的作用进行机制解析,发现Mg-Al LDH是通过促进LIF受体(leukaemia inhibitoryfactor receptor,LIFR)下游PI3K-Akt信号通路的活化来维持mESC的多能性。课题组在进一步研究中发现,LDH的粒径大小影响其对mESC自我更新的维持效果,与100nm、30nm的LDH相比,50nm的LDH表现出更显著的功能。这种功能一方面可能与mESC对50nm LDH有着更强的吞噬效果有关另一方面通过对上皮-间质转化(epithelial–mesenchymal transition,EMT)过程分析,发现50nm LDH能更有效抑制mESC的EMT过程,进而抑制细胞的分化


铁稳态在包括增殖、细胞死亡和分化在内的多种细胞活动中都发挥着重要作用,其中有证据表明,铁稳态参与干细胞多能性的调控,如铁可以影响造血干细胞和祖细胞的自我更新功能。基于此,笔者所在课题组进一步通过优化LDH的阳离子组成构建了Mg-Fe LDH,能更有效维持mESC的自我更新能Mg-Fe LDH除了能激活PI3K-Akt信号通路,还能激活LIFR下游JAK/STAT3信号通路,并且Mg-Fe LDH释放出的铁离子能促进TET1/2表达,影响DNA去甲基化进程,最终维持mESC的自我更新能力。然而Mg-Fe LDH对mESC的调控方向具有很强的时间窗口依赖性。近期有研究发现,Mg-Fe LDH能通过选择性激活维持mESC多能性的受体或诱导神经分化的受体发挥对mESC命运调控的双向作用。即在诱导mESC向神经前体细胞(neural progenitor cells,NPC)分化第1天加入的Mg-Fe LDH更倾向于与LIFR结合,显著上调Oct4Nanog等多能基因的表达,维持细胞的干性;而随着mESC向NPC的逐渐分化,细胞表面LIFR的表达逐渐降低,与神经发育及轴突调控相关受体Ptch1的表达丰度逐渐增高,并且在空间构象上能更易于与Mg-Fe LDH结合,因此在诱导分化第3天加入的Mg-Fe LDH能更有效促进Ptch1受体下游信号的激活,促进mESC向NPC的分化进程。这些研究成果表明LDH有望应用于ESC体外培养及定向诱导体系的优化,为ESC的体外扩增及诱导分化提供了新的策略。

基于LDH对ESC友好的生物相容性及多能性维持能力,笔者所在课题组进一步探讨了LDH对胚胎发育的影响,发现利用LDH搭载化疗药物依托泊苷(etoposide,VP16)能够抑制药物引起的mESC细胞凋亡,维持细胞的自我更新能力和分化潜能。通过构建ICR早期孕鼠模型发现LDH的搭载能够显著降低VP16导致的胚胎发育迟缓、胎盘结构异常及出生后子代鼠自主行为能力缺失等现象,揭示了LDH对胚胎发育的保护功能,并提示LDH作为化疗药物的载体有望应用于妊娠期肿瘤的治疗当中。为此,笔者所在课题组进一步构建了妊娠期乳腺癌的动物模型,探讨了LDH搭载VP16(LDH-VP16)的复合体系对妊娠期乳腺癌的治疗效果及对胚胎发育的影响。发现LDH-VP16能够在有效降低VP16胚胎毒性的基础上实现对肿瘤的高效杀伤。机制分析表明LDH的搭载能够改变VP16的核靶向特性,使VP16富集在肿瘤细胞的线粒体上,并通过选择性激活Caspase 3-GSDME通路,触发肿瘤细胞焦亡,而LDH-VP16并不会触发mESC的焦亡。揭示了LDH-VP16发挥抗肿瘤联合胚胎保护这种“一石二鸟”功能的分子作用机制,也为应用于妊娠期抗肿瘤药物的开发开辟了一个新视角。

» LDH诱导MSC的定向分化

由于ESC的临床转化面临伦理、道德、法律,以及细胞突变、组织排异和成瘤的风险,研究将进一步聚焦于更具临床转化潜力的MSC中。MSC是一种多能干细胞,具有向骨、软骨、脂肪、肌肉、肌腱等中胚层谱系细胞分化的能力,容易分离、扩增,并具有低免疫原性等特点,是组织工程中理想的“种子细胞”,如何在体内外高效地调控其定向分化是当今研究热点之一。笔者所在课题组的研究发现Mg-Al LDH能够显著促进大鼠骨髓来源MSC(rat bone marrow derived-MSCs,rBMSC) 的成骨分化,促进成骨相关标志物及碱性磷酸酶(alkaline phosphatase,ALP)的表达。通过RNA-seq对Mg-Al LDH诱导rBMSC成骨分化的分子机制进行深度解析, 发现Mg-Al LDH一方面通过与LGR5相互作用促进β-catenin核转位来刺激细胞成骨分化,同时通过抑制脂多糖(lipopolysaccharide,LPS)诱导的NF-κB信号通路的激活,来提高炎症条件下细胞的成骨分化,提示Mg-Al LDH具有减轻炎症反应和促进骨再生修复的双重作用。另一方面,组成LDH的阳离子具有可替换性,通过引入活性金属阳离子赋能LDH新的生物学效应。有研究者将La3+替换掉一部分Mg-Al LDH中的Al3+构建了La-LDH,发现La-LDH能显著提高LDH的促成骨功能。机制分析表明La-LDH具有促成骨及抑制破骨的双重作用,La-LDH不仅能通过激活Wnt/β-catenin信号通路促进rBMSC的增殖和成骨分化,上调ALPRunx-2COL-1OCN基因的表达,还能通过下调NF-κB信号通路来抑制rankl诱导的破骨细胞生成,进而抑制破骨发生。


LDH除了在诱导MSC成骨分化中表现出优秀的生物效应外,还具有显著的成软骨分化诱导能力。有报道发现,将Mg-Fe LDH处理过的人脐带间充质干细胞(human umbilical cord mesenchymal stem cells,hUC-MSC)移植到椎间盘退变的大鼠模型中,能加速椎间盘的再生进程。局灶黏附(focal adhesion)信号通路在细胞运动、骨系统发育和细胞生长分化中发挥重要作用。该报道揭示Mg-Fe LDH是通过调控细胞外基质(extracellular matrix,ECM)和局灶黏附信号通路上游整合素受体的相互作用来刺激软骨分化,从而促进组织再生。上述研究成果表明,LDH在调控MSC定向分化中表现出积极的促进作用,为纳米LDH应用于组织修复再生提供了新的思路和理论支撑。


» LDH参与调控其他干细胞命运的研究
除了参与调控ESC和MSC的增殖、分化外,笔者所在课题组的研究还发现,LDH能促进小鼠神经干细胞(mouse neural stem cell,mNSC) 向神经元的分化,增强细胞的迁移能力,促进L-Ca2+通道激活并诱导动作电位产生。将LDH植入脊髓损伤(spinal cord injury,SCI)小鼠模型的损伤位点后,可显著改善SCI小鼠的行为和电生理性能,增加BrdU+内源性mNSC和神经元在损伤部位的聚集。通过对损伤组织进行RNA测序发现,转化生长因子-β受体2(transforming growth factor-beta receptor 2,TGFBR2)是LDH抑制炎症反应和加速神经再生的关键基因。LDH增加了mNSC中TGF-β2(transforming growth factor-beta 2)的表达,激活了前体细胞的增殖。同时,LDH降低了小胶质细胞和骨髓源性巨噬细胞中M1标志物的表达,增加了M2标志的表达,有效改善了损伤位点的炎症反应,为SCI的恢复提供了一个更加友好的免疫微环境。


CSC是肿瘤组织中的一群具有无限增殖并能自我更新的细胞群,在肿瘤的生长、转移和复发过程中发挥重要作用。然而CSC具有抗放疗和化疗特性,因此,如何有效杀伤CSC是防止肿瘤复发的关键问题之一。LDH具有pH敏感性,能够在微酸性的肿瘤微环境中崩解。笔者所在课题组利用LDH作为载体,搭载CSC低敏感性的抗肿瘤药物VP16,构建了LDH-VP16,作用于人脑胶质瘤干细胞(human glioma stem cells,hGSC)。发现LDH的搭载能显著提高VP16对hGSC的敏感性,降低hGCS干性基因的表达,抑制细胞周期进程,促进细胞凋亡,最终降低肿瘤的恶性程度并有效杀伤hGCS。分子机制分析揭示LDH-VP16通过协同抑制PI3K/Akt/mTOR信号通路和Wnt/GSK3β/β-catenin信号通路来抑制hGSC的自我更新。同时PI3K/Akt/mTOR信号通路的下调能进一步促进hGSC的凋亡进程。证明了LDH-VP16对hGSC的靶向杀伤功能,为LDH基纳米药物应用于CSC的研究及临床治疗提供了重要的理论依据。


三、前景展望

纳米LDH及其复合物通过影响调控干细胞的信号通路对干细胞的增殖、自我更新及分化等进行调控,对干细胞体外扩增、组织修复、再生及抗肿瘤等均具有积极的效应,对细胞治疗、组织工程及干细胞再生医学领域的发展都具有重要意义,因此,在临床中表现出较好的应用前景。然而,干细胞命运的调控机制极其复杂,对于LDH在干细胞命运调控中的作用,仍有许多未知的答案有待探索。

(1)除现有已经揭示的调控靶点外,LDH对其他干细胞重要信号通路及基因的影响有待进一步揭示。

(2)深入探讨LDH元素、结构及粒径等理化性质与干细胞命运调控之间的规律,能够实现LDH的个性化设计并精准调控干细胞命运,有望应用于细胞治疗及再生修复。

(3)LDH应用于体内组织工程仍需借助于组织工程支架,构建与LDH相契合的支架材料,以便促进其在组织工程中的应用。

(4)LDH在生物体内的示踪及生物屏障透过等问题仍是LDH应用于干细胞临床转化所需解决的重要问题。

(5)LDH目前主要处于基础研究或实验室应用研发阶段,建立完整的LDH质量标准以早日实现产业化,推动LDH对干细胞命运调控从实验室走向临床是研究者们共同努力的方向和目标。


总之,进一步解决上述问题,探索出一条LDH与干细胞生命活动的规律,通过个性化设计LDH结构,实现精准调控干细胞生长及定向分化,有望推动其在临床中的转化应用。
(ID:yxckbsc2024060101)


撰稿作者简介

汪世龙 教授

现任同济大学生命科学与技术学院、附属东方医院双聘教授,主要从事纳米材料的生物效应研究。曾任中国生物化学与分子生物学理事、上海市生物化学与分子学学会第十二届副理事长、中国抗癌协会肿瘤学专业委员会常务委员,Nano Biomedicine and Engineering期刊编委。在Advanced Composites and Hybrid MaterialsAdvanced Functional MaterialsAcs NanoChemical Engineering JournalAdvanced ScienceBiomaterials等期刊上发表被SCI 收录的学术论文150余篇。主编的《蛋白质化学》获上海市普通高校优秀教材奖。



扫码关注

干细胞基地管理文章合集

【01】加强干细胞临床研究质量控制的策略探讨

【02】关于推进干细胞临床研究的若干思考

【03】医疗机构干细胞临床研究学术委员会建设现状与对策思考

【04】我国干细胞研究的伦理学问题及对策探讨
【05】双备案制度下干细胞临床研究角色职责的转变及应对策略
【06】关于推进干细胞产业化的思考——以医疗机构和企业为视角
【07】加强干细胞科技成果转化的策略探讨
【08】干细胞产业发展探索—浅谈上海市东方医院在干细胞转化领域的实践

【09】临床生物样本库建设的思考

【10】干细胞资源库安全管理体系建设的思考

【11】干细胞资源库及信息管理系统的标准化建设
【12】国家干细胞转化资源库首次发布干细胞放行检验和临床研究信息管理两个标准规范
【13】新《药品注册管理办法》对干细胞临床转化的影响
【14】干细胞的质量控制要点概述
【15】干细胞的质量控制要点与临床安全性探讨
【16】干细胞产品质量评价体系标准的建立及实践
【17】“质量源于设计(QbD)”理念如何指导干细胞药物研发
【18】临床研究用干细胞的“大质量”思想及其意义
【19】“质量”是干细胞产业高质量发展的根本保障——干细胞“质量产业”初探
【20】全球干细胞临床研究现状与展望
【21】医疗机构加强干细胞临床研究风险防控的策略探讨
【22】干细胞新兴学科人才建设的实践与探索

征稿链接

《医学参考报干细胞与再生医学专刊》 征稿启事

相关链接

【01】年轻外泌体生物纳米颗粒可恢复衰老受损的肌腱干/祖细胞功能及再生能力

【02】干细胞作为纳米材料载体在肿瘤相关疾病中的应用

【03】干细胞与纳米医学 ——纳米示踪剂、抗氧化纳米材料及磁性纳米材料与干细胞治疗

【04】基于纳米材料的干细胞成像示踪
【05】应用新型纳米材料促进肝细胞移植再殖肝脏
【06】
间充质干细胞作为纳米药物载体智能靶向治疗三阴性乳腺癌


干就有未来
《医学参考报干细胞与再生医学专刊》、同济大学附属东方医院干细胞基地公众号
 最新文章