文献速递|重庆大学ACB:铁(III)减轻了铁基双金属/PMS 系统氧化有机污染物的 pH 值依赖性

文摘   2025-01-08 09:15   中国香港  
点击订阅公众号 | 前沿学术成果每日更新

第一作者:Chaowei Yuan

通讯作者:李伟 副教授

通讯单位:重庆大学环境与生态学院

DOI:10.1016/j.apcatb.2024.125002









全文速览

这项研究深入探讨了过一硫酸盐(PMS)体系中铁基双金属氧化物耐 pH 值干扰的机理。我们采用 MnFe₂O₄尖晶石氧化物作为催化剂,与单金属类似物进行了深入比较。我们发现,随着 pH 值的升高,双金属氧化物中的铁(III)位点成为羟基离子的牺牲位点,从而稳定了活性锰位点的循环。pH 值升高会促进表面羟基的形成,而羟基会通过氢键增强对 PMS 和苯酚的吸附,从而促进相邻 Mn 位点对 PMS 的活化,加速催化剂表面的苯酚降解。Fe(III)牺牲和氢键增强的协同效应极大地增强了铁基双金属体系的 pH 耐受性,在 pH 6.2 时,其动力学效率比 pH 3.2 时提高了近 4.9 倍。这项研究加深了我们对可持续的类芬顿体系的理解,并强调了它们在降解污染物中的重要作用。








图文摘要







引言

因此,本研究试图阐明铁基双金属氧化物对 pH 值的特殊适应性的机制,重点研究 Fe(III) 的性质和催化功能。我们通过热解合成了一种铁基双金属尖晶石(MnFe2O4),并将其用于活化 PMS 以降解苯酚。在广泛的 pH 值范围内,将其性能与相应的单金属氧化物进行了比较。通过实验分析和理论计算,我们深入研究了其基本机制。研究结果在各种铁基双金属氧化物中得到了进一步验证。此外,我们还评估了 MnFe2O4 的稳定性及其实际应用潜力。这项研究为减轻有机污染物处理的经济负担,同时推动下一代催化剂的开发提供了宝贵的见解。





同位素标记技术

图文导读

Fig. 1(a) Schematic diagram of the MnFe2O4 synthesis. (b) SEM images of MnFe2O4 with (b) 2 μm, (c) 500 nm, and (d) 100 nm scale (Embedded average pore diameter of MnFe2O4. (e) XRD patterns of MnFe2O4. (f) HR-TEM image of MnFe2O4. (g) Energy-dispersive X-ray (EDX) mapping.

Fig. 2(a) Degradation of phenol in different reaction systems with buffer and (b) the corresponding kinetic curves. (Conditions: 5 mg/L phenol, 0.4 g/L catalyst, 0.5 mM PMS, and pH = 6.2 ± 0.3). (c) The reactive species quenching experiments under pH 3.2 condition. (Conditions: 5 mg/L phenol, 0.4 g/L MnFe2O4, 0.5 mM PMS, [MeOH] = [TBA] = 100 mM, BQ = L-His = 10 mM, PMSO = 0.1 mM and pH = 3.2 ± 0.3). (d) Degradation of phenol in buffer with different pH and (e) the corresponding reaction rate constants. (Conditions: 5 mg/L phenol, 0.4 g/L MnFe2O4, 0.5 mM PMS). (f) The reactive species quenching experiments in buffer under pH 6.2 conditions. (Conditions: 5 mg/L phenol, 0.4 g/L MnFe2O4, 0.5 mM PMS, [MeOH] = [TBA] = 100 mM, BQ = L-His = 10 mM, PMSO = 0.1 mM and pH = 6.2 ± 0.3). (g) Reaction rate constants for the phenol degradation by different monometallic oxide systems in the buffer. (Conditions: 5 mg/L phenol, 0.8 g/L catalyst, 0.5 mM PMS).

Fig. 3(a) Mn 2p and (b) Fe 2p XPS spectra of MnFe2O4 before and after the catalytic reaction at pH 6.2 conditions. (c) Increased Mn(IV) and Fe(III) content after catalytic reaction at different pH conditions. (d) Phenol degradation in Fe2O3/Mn2O3/PMS system with buffer. (Conditions: 5 mg/L phenol, 0.4 g/L catalyst, 0.5 mM PMS, 1 mM KSCN, and pH = 6.2 ± 0.3). (e) The pH in trends of initial pH 5.2 ultrapure water for adding different Fe/Mn monometallic oxides (1 g/L). (f) COHP analysis for the OH adsorption on the Fe site and Mn site respectively. (g) Calculated charge density and (h) adsorption energy of OH on the Fe site and Mn site respectively.

Fig. 4The adsorption energy of (a) PMS and (b) phenol on MnFe2O4/HO-MnFe2O4, respectively. (c) Zeta potentials of the MnFe2O4 at different pH values. (d) Proposed mechanism for broad pH applicability of MnFe2O4/PMS system. (e) Reaction rate constants for the phenol degradation by different bimetallic oxide systems in the buffer. (Conditions: 5 mg/L phenol, 0.4 g/L catalyst, 0.5 mM PMS).

Fig. 5(a) The removal of different pollutants in the MnFe2O4/PMS system with buffer. (Conditions: 5 mg/L pollutants, 0.4 g/L MnFe2O4, 0.5 mM PMS, pH = 6.2 ± 0.3). (b) COD removal of actual wastewater in the MnFe2O4//PMS system. (Conditions: 0.4 g/L MnFe2O4, 2 mM PMS, and initial pH = 11.1). (c) The predicted acute and chronic toxicity of phenol and its degradation products. (d,e) Design of an automated reactor with melamine sponges loaded with MnFe2O4 for the degradation of pollutants. (f) RhB samples at different times. (g) Reusability tests of the MnFe2O4/PMS system with buffer. (Conditions: 5 mg/L phenol, 0.4 g/L MnFe2O4, 0.5 mM PMS, pH = 6.2 ± 0.3). (h) RhB concentration in the effluent from a continuous-flow reactor with buffer. (RhB 10 mg/L, 1 mM PMS, pH = 6.2 ± 0.3 and flow rate: 60 mL/min).








研究意义

与相应的单金属氧化物相比,铁基双金属氧化物的 pH 适应性更强,我们对其背后的机理进行了细致的研究。我们的研究结果表明,Fe(III) 位点在拓宽 PMS 活化的 pH 值范围方面起着关键作用。在 MnFe2O4 双金属氧化物中,Fe(III) 优先与 OH- 而不是 Mn 发生络合,因此在 pH 值升高的情况下,Fe(III) 可作为牺牲位点,保护活性 Mn 位点免受 OH- 的干扰。进一步的机理研究表明,pH 值升高时形成的表面羟基(Fe-OH)通过氢键增强了对 PMS 和苯酚的吸附,从而促进了活性位点 Mn 上 PMS 的活化和污染物的降解。其他双金属氧化物(如 CoFe2O4、CuFe2O4 和 NiFe2O4)也证实了铁(III)牺牲作用的普遍性。此外,MnFe2O4 还能有效降解各种污染物,并在近中性条件下保持长期稳定性。此外,MnFe2O4/PMS 系统还能有效去除 pH 值为 11.1 的实际废水中 61.6% 的 COD。这些发现对于在实际应用中合理设计用于有机污染物处理的金属材料具有重要意义。


文献信息

Chaowei Yuan, Gefei Li, Maoxi Ran, Wei Yang, Pingyin Shu, Xizi Long, Wei Li, Fe(III) Alleviates pH Dependence of Iron-based Bimetallic/PMS System for Organic Pollutant Oxidation, Applied Catalysis B: Environment and Energy, 2025, https://doi.org/10.1016/j.apcatb.2024.125002



声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!

邮箱:Environ2022@163.com

欢迎大家将《水处理文献速递》加为星标

即时获取前沿学术成果

若有帮助,请点击“在看”分享!


投稿、转载请扫描下方二维码联系小编吧




MOFs帮助环境
推送MOFs基环境功能材料在环境污染控制领域的研究进展。
 最新文章