文献速递|东北师范大学ACB:通过聚光驱动的光热耦合芬顿式过氧化单硫酸盐活化系统促进硫酸根自由基的产生

文摘   2025-01-09 22:53   北京  
点击订阅公众号 | 前沿学术成果每日更新

第一作者:Fang Zhang

通讯作者:李兴华 教授

通讯单位:东北师范大学紫外发光材料与技术教育部重点实验室

DOI:10.1016/j.apcatb.2024.124923









全文速览

利用太阳光快速、高效地处理高浓度有机废水对于可持续的环境修复至关重要,但由于活性物质生成缓慢而受到限制。在此,我们报告了一种聚光驱动的光热耦合 Fenton-like 漂浮系统,该系统几乎利用了整个太阳光谱,在 30 kW m-² 的聚光强度下,6 分钟内实现了对盐酸四环素(0.1 g L-¹)99% 的去除率。该系统通过将酞菁钴和炭黑整合到可漂浮的聚丙烯腈纳米纤维毡中,增强了光吸收、光电子生成和光热转换能力,从而实现了高效的过硫酸盐(PMS)活化。实验和理论研究表明,聚光激发由于电荷分离、转移和等离子体诱导的热电子注入,推动了钴中心的光电子积累,从而大大提高了 SO4 自由基的产生,并最大限度地减少了钴浸出(低于 0.25 mg L-¹)。这使得稳态[SO4--]ss浓度增加了19.4倍,当光照强度从1 kW m-²增加到30 kW m-²时,[SO4--]ss浓度的贡献率从21.7%上升到70.9%。光热耦合 Fenton-like 反应的初始和最终 PMS 利用率分别为 2.96 和 0.99,分别是光 Fenton-like 反应的约 2.03 和 1.27 倍,是室温下 Fenton-like 反应的 26.9 和 5.88 倍。该系统为快速、连续处理工业废水和有机污染物提供了一种前景广阔、可持续且高效的方法。








图文摘要

利用过一硫酸盐(PMS)和酞菁钴(CoPc)@炭黑(CB)/聚丙烯腈(PAN)纳米纤维开发了一种聚光驱动的光热芬顿样系统,聚光驱动钴中心的光电子积累,改变了 PMS 的活化途径,当光照强度从 1 kW m-2 增加到 30 kW m-2 时,SO4 的稳态浓度增加了 19.4 倍。







引言

在本研究中,我们将酞菁钴(CoPc)作为类光 Fenton- 材料和炭黑(CB)作为光热材料整合到聚丙烯腈(PAN)纳米纤维(CoPc@CB/PAN)上,构建了一种聚光驱动的光热耦合类 Fenton- 系统。CoPc@CB/PAN 无需搅拌过程就能在更靠近空气/水界面的地方漂浮。我们通过实验和理论计算系统地研究了聚光辐照驱动的PMS活化和自由基生成途径对光强度的依赖性。在 30 kW m-2 的聚光强度下持续 6 分钟,系统对高浓度 0.1 g L-1 的盐酸四环素(TC)的去除率达到 99%。当光照强度从 1 kW m-2 增加到 30 kW m-2 时,-OH 和 SO4--的稳态浓度分别显著增加到 1.98 倍和 19.4 倍,SO4--的贡献率从 21.7% 增加到 70.9%。这种新方法大大提高了 SO4--的产量,提高了 PMS 的利用率,超过了其他广泛报道的 PMS 系统。这项研究全面探讨了聚光驱动光热耦合 Fenton-like 系统用于先进有机废水处理的可行性、优越性和潜在应用。





同位素标记技术

图文导读

Fig. 1Concentrated-light-driven photo-thermal coupled Fenton-like floating system. (a) Scheme for the concentrated-light-driven system for high-speed and continuous treatment of organic wastewater. (b) Materials design diagram for photo-thermal coupled Fenton-like reactions. (c) Preparation CoPc@CB/PAN nanofibers with floating (optical photographs) and photothermal conversion (infrared photographs) performance. (d), (e) TEM, STEM, and the corresponding energy dispersive X-ray (EDX) elemental mapping images of C, N, Co, and O elements of CoPc@CB/PAN nanofibers.

Fig. 2Light-intensity dependent photo-thermal coupled Fenton-like wastewater treatment. (a) Schematic illustration of the in-situ surface/solution temperature monitoring during the degradation process. (b) In-situ catalyst surface and reaction solution temperatures during the degradation process under different light intensities for CB/PAN, CoPc@PAN, and CoPc@CB/PAN (from left to right). (c), (d) Degradation curves and the corresponding pseudo-first-order k-values for CB/PAN, CoPc@PAN, and CoPc@CB/PAN under light intensity of 1-, 5-, and 10-kW m−2 (TC = 0.02 g L−1, 100 mL, catalyst = 0.1 g L−1, PMS = 0.1 g L−1).

Fig. 3Synergistic effect of CB and CoPc on the peroxymonosulfate activation process. (a-c) Comparison of ATR-IR spectra for PMS activation including that without catalysts, and with CB/PAN, CoPc@PAN, and CoPc@CB/PAN nanofibers, under dark and light irradiation of 1 and 10 kW m−2 after 10 min, respectively. (d), (e) ATR-IR spectra evolution at 1-min intervals over 10 min of CoPc@PAN and CoPc@CB/PAN nanofibers at light irradiation of 1 and 10 kW m−2. (f) Transient fluorescence spectra and fluorescence lifetime of CoPc@PAN and CoPc@CB/PAN nanofibers. (g) The ESR and light-ESR (LESR) spectra of CoPc@PAN and CoPc@CB/PAN nanofibers. (h) Enlarged distribution of relaxation times (DRT) spectra of CoPc@PAN and CoPc@CB/PAN measured in PMS electrolyte under dark and light conditions.

Fig. 4Concentrated-light-driven photo-thermal coupled Fenton-like floating system. (a) Schematic illustration of the experimental setups with Fresnel lens to simulate concentrated-light. (b) Degradation curves and cycle tests of TC solution using CoPc@CB/PAN as catalyst under light intensity of 10- and 30-kW m−2 (TC = 0.1 g L−1, flow rate = 0.3 mL min−1, PMS = 0.1 g L−1, flow rate = 0.7 mL min−1, catalyst = 0.1 g L−1). (c) Comparisons of pollutant removal rate considering the doses of the catalyst, PMS, and pollutants versus PMS/pollutant concentration ratios (Relevant raw data and corresponding references are available in Table S3). (d) Total organic carbon (TOC) and Co-leaching during five cycles. (e) Comparison of TOC removal, PMS dose, and Pollutant concentration with previous reports (Relevant raw data and corresponding references are available in Table S4). (f), (g) The steady-state concentration of •OH and SO4•− and the reactive species contributions under light intensity of 1, 10, and 30 kW m−2. (h) The synergistic enhancement ratio of photogenerated electrons and photothermal effects (ISPTE), the photogenerated electrons enhancement ratio (IPEE), and the thermal enhancement ratio (ITE). (i) PMS decomposition processes during TC degradation in photo-thermal coupled Fenton-like reaction (PTCFL), Photo-Fenton-like reaction at room temperature (PFL-R), and Fenton-like reaction at room temperature (FL-R) systems. (j) The corresponding PMS utilization efficiencies in the above three catalytic systems. (k) Comparison of PMS utilization efficiencies of this work with other reported PMS activation systems (Relevant raw data and corresponding references are available in Table S7).

Fig. 5Co-center electron density dependent PMS activation. (a) Illustration of active species generation via the bond-breaking sites of HSO5¯ (Oi–Oii and Oi–Hi). (b) Adsorption energy (|Eads|), the bond lengths of Oi–Oii and Oi–Hi bonds, and Bader charges (|Q|) for CoPc-HSO5¯ systems with different Co-center electron densities (valence states). (c) Charge density difference (CDD) for CoPc-HSO5¯ systems with an isosurface level of 0.0045 e Bohr−3 (yellow: electron depletion; cyan: electron aggregation). (d) Bond length variation between absorbed and free HSO5¯ (R: the optimized Oi−Oii and Oi−Hi bond lengths for CoPc-HSO5¯ systems, R0: the optimized Oi−Oii and Oi−Hi bond lengths of free HSO5¯). (e) Total and Co-3d DOS of pure CoPc and CoPc-HSO5¯ systems with + 2 and + 1.5 valence states of Co-centers.

Fig. 6Concentrated-light effects on degradation pathway and pollutant removal diversity. (a) The possible degradation pathway-Ⅰ of TC in CoPc@CB/PAN-PMS system under light irradiations (concentrated light intensity: 30 kW m−2 and low light intensity: 1 kW m−2, TC = 0.02 g L−1, 40 mL, catalyst = 0.1 g L−1, PMS = 0.1 g L−1). (b) Molecular structures of different pollutants, their degradation efficiencies, and the corresponding k-values in CoPc@CB/PAN-PMS system under light irradiation (light intensity: 1 kW m−2 and 30 kW m−2, types of contaminants: Rhodamine B (Rh B), Methyl Orange (MO), Sulfamerazine (SMZ), Sulfadiazine (SDZ), Atrazine (ATZ), 4-Chlorophenol (4-CP), NB, BA, CBZ, Ofloxacin (OFX), and Norfloxacin (NOR), [Pollutant] = 0.01 g L−1 100 mL, catalyst = 0.1 g L−1, PMS = 0.1 g L−1).








研究意义

综上所述,利用可漂浮的 CoPc@CB/PAN 纳米纤维构建了一种聚光驱动的光热耦合 Fenton 型漂浮系统,用于快速处理高浓度有机废水。当光照强度从1 kW m-2 增加到30 kW m-2 时,CoPc 和 CB 上的聚光激发通过电荷分离/转移和等离子体诱导的热电子注入诱导了Co-中心上显著的光电子积累,从而使[SO4--]ss 的稳态浓度大幅增加了19.4 倍,相应的贡献率从21.7% 上升到70.9%。同时,纳米纤维中 CoPc 和 CB 的集成促进了高效的光热转换,使宽光谱太阳光得以有效利用。光电子和光热过程的协同作用既加速了 PMS 的活化和 TC 的降解,又提高了反应物的利用率。值得注意的是,聚光驱动的光热耦合 Fenton-like 系统在短短 6 分钟内对 0.1 g L-1 的三氯甲烷的去除率达到 99%。聚光辐照还改变了降解途径,提高了共中心稳定性和 PMS 利用效率,为多种有机污染物的处理提供了通用解决方案。这为探索用于有机污染物处理的高效类光芬顿催化剂提供了一条新途径。所设计的聚光驱动光热耦合类 Fenton- 系统在先进的工业废水处理方面具有显著的可行性、优越性和潜力,为环境修复提供了一种可持续的高效解决方案。

文献信息

Fang Zhang, Xinghua Li, Dan Wang, Xi Wu, Luyao Niu, Yukun Li, Peng Zhang, Hancheng Zhu, Jiayu Xin, Xiaowei Li, Changlu Shao, Yichun Liu, Boosting sulfate radical production via concentrated-light-driven photo-thermal coupled Fenton-like peroxymonosulfate activation system, Applied Catalysis B: Environment and Energy, 2025, https://doi.org/10.1016/j.apcatb.2024.124923



声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!

邮箱:Environ2022@163.com

欢迎大家将《水处理文献速递》加为星标

即时获取前沿学术成果

若有帮助,请点击“在看”分享!


投稿、转载请扫描下方二维码联系小编吧




MOFs帮助环境
推送MOFs基环境功能材料在环境污染控制领域的研究进展。
 最新文章