这是郝事之秋陪你的第2178天!
Hope everybody can study well and make progress every day!
Abstract
背景回顾:Plants respond to various environmental stimuli in sophisticated ways. Takahashi et al. (2018) revealed that CLAVATA3/EMBRYO SURROUNDING REIGON-related 25 (CLE25) peptide is produced in roots under drought stress and transported to shoots, where it induces abscisic acid biosynthesis, resulting in drought resistance in Arabidopsis.
提出问题:However, the drought-related function of the CLE26 peptide, which has the same amino acid sequence as CLE25 (except for one amino acid substitution), is still unknown.
结果1-CLE26参与干旱胁迫记忆:In this study, a phenotypic analysis of Arabidopsis plants under repetitive drought stress treatment indicates that CLE26 is associated with drought stress memory and promotes survival rate at the second dehydration event.
结果2-XYN1负作用于耐旱,且依赖于CLE26:Additionally, we find that a loss-of-function mutant of a cell-wall-modifying gene, XYLANASE1 (XYN1), exhibits improved resistance to drought, which is suppressed by the mutation of CLE26.
结果3-CLE26转运依赖于XYN1的下调:XYN1 is down-regulated in response to drought in wild-type plants. A further analysis shows that the synthetic CLE26 peptide is well transported in both xyn1 and drought-pretreated wild-type plants but not in untreated wild-type plants.
结论:These results suggest a novel cell wall function in drought stress memory; short-term dehydration down-regulates XYN1 in xylem cells, leading to probable cell wall modification, which alters CLE26 peptide transport, resulting in drought resistance under subsequent long-term dehydration.
摘 要
植物以复杂的方式响应各种环境刺激。Takahashi等人于2018年发现,干旱胁迫条件下拟南芥根中产生的CLE25多肽能够被转运到地上部分,从而诱导脱落酸ABA的生物合成,提升植株的耐旱性。但是,关于CLE26多肽的干旱相关的功能仍不清楚,CLE26与CLE25的氨基酸序列基本一致,除了有一处替换。本文中,作者对于重复干旱胁迫处理下的拟南芥进行了表型分析,发现CLE26与干旱胁迫记忆有关,能够提升植株在第二轮干旱胁迫下的生存率。另外,作者发现一个细胞壁修饰基因XYN1的功能缺失突变存在更强的干旱耐受性,并且这会受到CLE26突变的抑制。在野生型植株中,干旱胁迫处理会下调XYN1的表达。进一步的分析显示,人工合成的CLE26多肽在xyn1突变体和干旱预处理的野生型植株中都能够正常的被转运,但是在未经干旱胁迫处理的野生型植株中不行。这些结果表明细胞壁在干旱胁迫记忆中扮演着一个新的功能,短期的失水会下调XYN1基因在木质部细胞中的表达,而这可能会影响细胞壁修饰,从而改变CLE26多肽的转运,最终导致在随后长期干旱胁迫下的干旱耐受性。
通
讯
作
者
个人简介:
1996年,日本东北大学,学士;
2001年,日本东京大学,博士;
2001-2005年,RIKEN植物科学中心,研究人员;
2005-2008年,瑞典于默奥植物科学中心,研究人员;
2008-2021年,日本东京大学,助理教授;
2021年-至今,京都先端科学大学,副教授。
研究方向:
1. 细胞壁介导的植物对各种环境的响应;
2. 基于细胞壁的生物量基因工程;
3. 具有未知功能的细胞壁相关基因的功能鉴定。
END