这是郝事之秋陪你的第2195天!
Hope everybody can study well and make progress every day!
Abstract
背景+问题:Drought stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of drought resistance in rice.
主要发现:Here, through a genome-wide association study, we reveal that natural variations in DROUGHT RESISTANCE GENE 9 (DRG9), encoding a double-stranded RNA (dsRNA) binding protein, contribute to drought resistance.
结果1-DRG9作用机制:Under drought stress, DRG9 condenses into stress granules (SGs) through liquid-liquid phase separation via a crucial α-helix. DRG9 recruits the mRNAs of OsNCED4, a key gene for the biosynthesis of abscisic acid, into SGs and protects them from degradation.
结果2-等位基因变异:In drought-resistant DRG9 allele, natural variations in the coding region, causing an amino acid substitution (G267F) within the zinc finger domain, increase DRG9’s binding ability to OsNCED4 mRNA and enhance drought resistance.
结果3-实际应用:Introgression of the drought-resistant DRG9 allele into the elite rice Huanghuazhan significantly improves its drought resistance.
结论:Thus, our study underscores the role of a dsRNA-binding protein in drought resistance and its promising value in breeding drought-resistant rice.
摘 要
干旱胁迫严重限制全球的水稻产量,因此亟需了解水稻干旱耐受性的遗传基础。本文中,作者通过全基因组关联分析发现了一个编码双链RNA结合蛋白的基因DRG9,其自然变异作用于水稻的干旱耐受性。在干旱胁迫条件下,DRG9蛋白会通过α-螺旋进行液-液相分离,从而凝聚形成胁迫应激颗粒。DRG9会将ABA合成关键基因OsNCED4的mRNA招募至胁迫颗粒中,从而避免后者被降解。在干旱耐受性的DRG9等位基因中,编码区的自然变异会导致其在锌指结构域发生一个氨基酸的替换(G267F),从而增强了DRG9对于OsNCED4基因mRNA的结合能力,进而增强了干旱耐受性。将干旱耐受性DRG9等位基因通过渐渗方式导入优良水稻品系'黄华占'中,能够明显增强其干旱耐受性。因此,本文的研究揭示了一个dsRNA结合蛋白在干旱耐受性中的重要作用,其在未来水稻干旱抗性育种中具有广阔前景。
p.s. stress granules, 胁迫应激颗粒,一种RNP颗粒,其可以在各种胁迫应激条件下细胞内组装形成的颗粒,参与mRNA翻译和降解的调节。
华中农业大学熊立仲教授和赖雪雷教授为本文共同通讯作者,王怀军博士生和叶田田博士生为本文共同第一作者。该研究得到了国家重点研发计划(2022YFF1001604)、国家自然科学基金(31930080、31821005)以及湖北洪山实验室基金(2021hszd011、2021hskf003)的联合资助。
END