【试题分析】一道双圆轨迹下线段最小值问题

文摘   2024-10-21 14:45   广东  

Source of the problem: 请问这个题能用GGB画出来吗?利用相似巧妙转化,兼谈喻平教授对数学教育研究的三点重要看法

When weakening one condition, the problem becomes:
In triangle ABC, ∠A=60°, and D is a point on BC such that BD:CD=1:2. Given AD=2, find the minimum value of BC.

Solution (using rotation transformation): Extend BE parallel to AC from point B, intersecting the extended line AD at point E. In triangle ABE, we have : 

AE=AD+DE=2+1=3 and ∠ABE=120°.

Thus, the trajectory of point B is an arc of a circle, as shown in the figure below : 

Since D is the trisection point of chord AE, we find OD=1. Extend OD to point I so that DI=2OD=2, making OI=3. Draw line IC, as shown in the figure below : 

From triangles BDO and CDI being similar, we have 

IC=2√3 (a constant value). 

Therefore, 

point C lies on circle I with center I and radius 2√3.

Let OI intersect circle O at point K. Clearly, when point B reaches K, BC is minimized, as illustrated in the figure below :

At this time, 

BC=IC-IB(IK)=2√3-(3-√3)=3√3-3. 

Thus, 

BC≥3√3-3, 

with equality achieved if and only if ∠ABC=45° (Because triangle AOI is a right triangle. )



大佬说数学
初中数学老师,曾被聘广州某区中心组成员,擅长命题、解题、讲课……记录、分享教学的点滴思考,立足广州、放眼全国,哈哈~~
 最新文章