电镜实验室环境对电镜的影响系列(二):电镜实验室的电磁环境改善

健康   2024-08-31 16:26   丹麦  


编者寄语:

啊,标题好像不太严谨,电镜实验室环境对电镜本身是没有什么影响的,影响的只是成像质量,影响的只是电镜能否呈现最佳性能。这不是废话,许多新用户都问过我,“振动超标?电镜这么精密的仪器,会不会震坏呀?”“磁场超标?电镜会不会磁化呀?对操作人员有没有影响呀?”某公司的扫描电镜和透射电镜,身历汶川地震(具体位置在绵阳)而毫无影响,地震后开机,一切正常。几个几十个毫高斯磁场既不会磁化电镜也不会影响操作人员健康(曾经查到过一个上海市暂行卫生标准,该标准认为,五高斯以下磁场是安全的,5个高斯!还远着呢)。跑题了跑题了,打住。

电子显微镜工作时,精细的电子束要在很高的真空环境中飞行0.7米(扫描电镜)到2米以上(透射电镜)。一路上,周边的磁场、脚下地面的振动、空气中有噪声还有气流,这些都会诱使电子束偏离我们期望它走的路径,直接致使成像质量变差,所以对于周边的环境就有一些特殊的要求(其它大多数仪器都是电子乖乖地在导体和半导体中流动,基本不会被周边环境干扰),以确保电子束能够规规矩矩,不乱跑乱动。

在本专题系列讨论中,DC特指频率在0.001~1Hz的准直流(即near DC,也有称为近直流的)电磁干扰,AC特指为以50Hz为基频、不超过五次谐波(250Hz)的交流电磁干扰。对电镜干扰大的不是均方根有效值,而是峰峰值(peak to peak,简写为p-p),以后不特别说明的都是峰峰值。比如3mG,就是峰峰值为3毫高斯(3mGauss p-p)的电磁干扰。为什么特地说明一下呢?因为各种手持式简易磁场测试仪显示的都是均方根有效值,测出的数值往往比我们相知道的峰峰值小许多(电源的高次谐波越严重,波峰因数就越高,实测中碰到过波峰因数超过10的情况)。

纯直流磁场只会使全部电子束稳定偏移相同角度、也就是只会使全部像素点稳定偏移相同的方向和距离,并不会影响成像质量;350Hz以上的高频AC(除非刻意制造,否则很难见到它们踪影)电磁干扰对成像质量影响极小,实际工作中可以忽略,所以我们后面就不讨论它们啦。

振动也是一个经常谈起的话题,低频微振是我们重点关注对象(很遗憾我们人类很难直接查觉。曾经不止一次有人在测试现场质疑我的测试结果,理由就是“我怎么没有感觉”)。干扰电镜的振动大多数不是由某振动源单一产生的(特殊情况时也会有关闭某一振动源后环境振动明显变化现象),多数情况下不能简单地依靠关闭振动源来解决振动问题,我们将在后面陆续展开的专题中分别讨论。

噪声声波(还有气流,就是空调吹出来的风啦)都会作用在镜筒上引发振动,对电镜成像质量的影响等同于振动。注意讨论振动时一定不能忽略频率,离开频率谈振幅,就是什么什么来着,呵呵。为什么又要特地说明一下呢?因为各种手持式简易噪声测试仪没有傅里叶变换,显示的数值参考意义不大(咳,还是说有点参考价值吧,怕抬杠)。

地线对电镜的影响往往超乎大多数人的想象。什么?一根地线有什么可大惊小怪的?哎哎,这也是电镜实验室环境的特殊性之一啦,我们在后面详细讨论吧。

对了,还有UPS。故弄玄虚吧?不就是个不间断电源嘛,这玩意儿现在到处都是,也有什么说道吗?不好意思,还真有,我们后面慢慢聊。

本专题系列中,我们主要想讨论以上几方面问题,没漏掉什么吧?好吧,出发!


正文:

凡是有电源的地方、有用电设备的地方、几十米内有地下电缆的地方,距离地铁沿线几百米内的地方,甚至只有金属管道和金属梁架的地方,都可能有高达数十甚至数百毫高斯的AC和DC干扰。因为低频电磁干扰往往是多源复合的矢量,低频电磁干扰的强度变化一般无规律可循(也有例外,如单一主源情况),短时间内就会有大幅波动。

实际测试中,发现城市一般环境下(周边数十米范围无楼房和明显可见的输电线变压器等),AC也可达0.5~1.0毫高斯,郊区周围几百米内无人工设施环境AC可低于0.1毫高斯(看看人类干的好事)。

水平方向AC磁场干扰(对不同品牌和精度的电镜标准不同,并且与人的主观感觉也有直接关系,所以无法给出一个确切数值;一般可以认为3~20mG就是强干扰吧)轻则使图像垂直边缘产生毛刺,重则使图像分割成若干幅。

水平方向有强DC磁场干扰时,图像会漂移和扭曲。由于DC干扰频率低速度慢,低倍率和短时间实验时我们可能注意不到,或者误认为是其它原因。

垂直方向的AC和DC影响电子束飞行速度,致使难以聚焦和消除像散。

各电镜厂商对于自己不同型号的电镜,有不同的标准要求,如果预定的电镜室环境超标,那就要采取措施改善至合格,否则电镜达不到规定的标准,厂商不管的,呜呜。

因为DC的频率(0.001~1Hz)和AC的频率(基频50Hz)相差四个数量级以上, “量变引起质变”,面对不同性质的对手,应对方法显然应该不同,所以我们要把AC和DC分开讨论。

常见的AC干扰源有许多:附近(包括楼上和楼下)的供电用电设备,如变压器、配电柜(箱)、走廊里桥架上的供电电缆线、多余并盘成环形的电缆线、附近的电炉、深冷冰箱、风机、中央空调主机、深井泵、空压机、五米内的UPS(100kVA以下)、冷却水箱等等,都是常见的干扰源。复和叠加后我们经常可以测到3到6毫高斯,偶然也有高达18到22毫高斯的(不多,我一共只碰到没几次)。

有些电镜需要配备UPS和冷却水箱,它们的摆放也要注意。冷却水箱一般放在辅助设备间里,只要尽量原离镜筒即可。但是摆放UPS时需要注意,除尽量远离镜筒外,一般UPS主机产生的水平(X/Y)方向AC杂散磁场强度是不一样的(UPS技术标准中没有这一项,必须引起足够重视)。曾经实际检测到某品牌UPS主机产生的X方向磁场比Y方向大两三倍的情况,本人还有过将UPS主机水平转动一个角度就大大减少AC、扫描电镜分辨率立马提高一倍的实际经历。

另外有些看似毫不相关的东西竟然也会产生磁场。如消防水管(广州某部门实测)、工字钢底梁(北京某博物院实测)、有铁质护套管的普通日光灯照明电线(武汉某半导体长实测)、暖气片及暖气管道(哈尔滨某大学实测)、老式结构建筑的水管(长春某研究所实测)等,都在三米左右测到过1~3mG的AC磁场,并使用“梯度测试法”反复确认,可以明确锁定源头。

某些经常被怀疑、实际往往却“不是坏蛋”的有:电梯(最容易被怀疑到的无辜者,因为它的动力部件在很远的顶层,电梯轿厢完全不产生AC磁场)、小功率空压机和真空泵(可能蹦蹦蹦叫的挺响,实际一两米外就衰减到1mG以下)、小型挂式或柜式空调(耗电量大的主机一般在几米之外,室内部分基本不产生磁场)等,不必在它们身上浪费时间。

DC干扰源不多,大型UPS站、电解槽、直流电动机调速的轧钢机等都是可疑对象。不过最常见的还是来自地铁。

我国目前地铁供电有直流750V(京津)和1500V(沪)两种制式,地铁在启动出站时电流变化最大,那时的DC干扰也最强。上海地铁二号线在地面三百米远处DC变化可达15mG以上,750V供电的地铁线路DC干扰更大些(不要忘了磁场是电流产生的哦)。

顺便说一句,高铁和动车是交流供电,和地铁不一样,只有AC,基本不产生DC电磁干扰。

知道了原因,那么很多时候我们“惹不起躲得起”,考虑到“磁场强度和距离的平方成反比”,找到主源(有时也找不到)后,有时避开同一楼层供电支路的“上游”,搬开十几米或者换一个房间/换个楼层/换个楼就搞定,一分钱不花,哈哈。

这里报告一个坏消息,在大多数情况下都是“无处可躲”,那就只好破费些银子,做个磁屏蔽或者买套消磁系统吧。

对于AC我们有两个解决方案:被动式磁屏蔽(又分为磁路分流和感生反相磁场两种,详见本系列之五《几种改善电磁环境方法比较》)和主动式消磁系统(详见本系列之四《主动式低频消磁系统》)。但对于DC,目前我们只有选用具有DC消磁功能的消磁系统这唯一的解决方案,因为无论从理论上还是从实践上,都可以证明两种被动式磁屏蔽都不能搞定DC。

(待续)



卢克任工作室
显微镜行业的老兵/游历近50国仍永不停歇的旅行者/NAUI认证的高级潜水员。这个公众号用于展示和传播光学、激光共聚焦、双光子、电子、离子显微镜及光刻系统行业的专业技术,仪器行业的营销、售后、质量管理理念和心得,还有个人的独特的人生经历。
 最新文章