Small.用于稳定增强电致化学发光的超薄缺氮碳氮化物

学术   2024-11-10 14:13   陕西  

电化学发光(ECL)是一种通过电化学控制的化学发光过程,它在电极表面引发发光,激发多种物质。ECL具有背景噪音低、动态响应范围广、灵敏度高、操作简单等优点,因此在生物分析、临床诊断、环境监测和食品分析中应用广泛。发光材料是ECL的基本组成部分,在生物分析中起着至关重要的作用。在众多ECL材料中,碳氮化合物(CN)具有层状结构,每一层由形成三聚三嗪单元的碳和氮原子组成。CN因其可调的发光特性、优良的生物相容性、无毒性和低廉的成本而受到青睐,成为一种有前景的发光候选材料。在阴极CN ECL过程中,遵循典型的氧化还原路径,这一过程以电子(e−)和空穴(h+)的转移和重组为标志。2012年,Cheng等人首次证明CN可以与K2S2O8相互作用以产生ECL信号。随后的研究表明,CNECL信号强度在很大程度上依赖于共反应物的活化。然而,原始的CN被发现活性位点太少,限制了其有效激活K2S2O8的能力。Zhu等人引入了负载在CN上的金纳米颗粒和金单原子作为双活性位点,大大改善了K2S2O8分解成SO4•−的过程,从而显著增强了CNECL信号。我们的研究小组通过超声辅助沉淀法合成了CN/MoS2-Ni三元异质结构,其中的Ni纳米颗粒作为催化活性位点,加速K2S2O8的分解,最终获得了稳定的ECL信号。虽然通过形成复合材料提高了K2S2O8的催化分解效率,但CN的固有结构通过暴露更多的活性位点提供了比较优势。Dong等人制备了氮缺陷的CN,其中引入的氮缺陷作为光催化活性位点,促进了光生电子(e−)和空穴(h+)的分离,从而增加了催化反应的可能性。因此,将缺陷工程应用于修改电子带结构和增强活性位点的暴露对于实现K2S2O8催化中的高效和稳定的ECL发射至关重要。

本研究中,使用醋酸铵作为发泡剂生成气体,制备了具有N2C缺陷的多孔CNACN),并通过超声作用合成了含有N2C缺陷的超薄石墨碳氮化物(UACN)。UACN的超薄结构提供了更多的N2C缺陷催化活性位点,允许通过UACN屏障的有效电子隧穿、快速电子转移和K2S2O8的快速催化。更为重要的是,N2C缺陷创建了一个电子陷阱,引导过量电子在UACN周围积累形成局域态,促进了电子-空穴对的重组,导致增强和稳定的ECL信号。随后,UACN被用作ECL发射体用于检测肿瘤标志物癌胚抗原,建立了一个高度灵敏的免疫传感平台,在实际应用中展示了显著的潜力。

Figure 1. (A) Preparation process diagram of UACN. (B1-B3) TEM of CN. (C1-C3) TEM of ACN. (D1-D3) TEM of UACN. (E1-E3) EDS mapping of UACN.

Figure 2. (A-B) AFM characterization of CN, ACN and UACN. (C) XRD and (D) FT-IR spectra. XPS of (E) C1s, (F) N1s spectra. (G) bandgap structure spectra. (H) VB-XPS spectra.

Figure 3.(A) CV curves under different bottom fluids (The illustration is: ECL with or without K2S2O8). (B) ECL intensity under different ammonium acetate contents. (C) ECL intensity under different ultrasonic solvents. (D) ECL intensity at different material concentrations. (E) Optimization of scanning rate. (F) Material stability. (G) Optimization of K2S2O8concentration. (H) ECL potential curves of UACN at different concentrations of K2S2O8. (I) ECL-time under forward and reverse scanning.

Figure 4. (A-B) Band structure of CN and UACN. (C) Density of states of CN and UACN. (D-E)Calculated models and (F) projected density of states (DOS) of the adsorbed K2S2O8molecule on CN and UACN. (G) The bond breaking mechanism of UACN in the activation system.

Figure 5. (A) I-Tof CN and UACN in different concentration of K2S2O8. (B) Depict the plots of Icat/Ibuf vs. t1/2. The square of the slopes in CN and UACN (C) correspond to the concentration. (D) Step pulse plots of CN and UACN at different potentials.(E) SP diagram for joining TEOA. (F) Holes recombination efficiency of CN, ACN and UACN evaluated by current. (G) Time-resolved PL decay spectra.

Figure 6. ECL mechanism of CN and UACN.

Figure 7. (A) Sensor assembly flowchart based on UACN. (B) CV curves, (C) EIS curves of electrode assembly process: bare GCE (a), UACN/GCE (b), anti-CEA/UACN/GCE (c), BSA/anti-CEA/UACN/GCE (d), CEA/BSA/anti-CEA/UACN/GCE (e). (D) pH optimize. (E) ECL Intensity and (F) logarithmic calibration curve of the response to CEA ECL signal based on the UACN biosensor. (G) Repeatability, stability and selectivity of impedance immunosensors for CEA.

相关成果以“Ultrathin-N2C-Deficient Carbon Nitride for Stabilized Enhancement of Electrochemiluminescence,发表在国际学术期刊“Small”上。

文献链接:https://doi.org/10.1002/smll.202403138


分析化学方法
纳米材料生物传感器:免疫分析,纳米酶,电化学,拉曼,荧光,柔性传感器
 最新文章