新论文 | ​​​​结构小失效概率问题的分层概率空间剖分方法

文摘   2024-09-08 13:19   德国  
A layer assigned probability space partition method for structural small failure probability problem

结构小失效概率问题的分层概率空间剖分方法

引用格式 | Cited by
Bai Y, Ning CL, Li J, 2024. A layer assigned probability space partition method for structural small failure probability problem. Probabilistic Engineering Mechanics, 76: 103633.
DOI: 10.1016/j.probengmech.2024.103633

摘要 | Abstract

物理综合法 (physical synthesis method, PSM) 因其明确的概念基础,成为进行结构可靠性分析的强大框架。然而,在处理小失效概率情形时,该方法通常需要大量计算成本。为应对这一挑战,本研究提出了一种分层概率空间剖分方法,用于在物理综合法框架下,根据结构构件的极限承载力失效准则识别关键点。该方法借鉴了 Harbitz β 球,采用构件最小可靠性指标,来识别概率空间中的重要代表性点,从而简化计算。通过两个案例研究展示了该方法的有效性:一是简支梁,二是六层钢筋混凝土框架。结果表明,与传统蒙特卡罗方法相比,结合物理综合法,该方法在效率上有显著提高。此外,在相同计算资源下,该方法的计算精度优于重要性抽样方法,尤其在处理小失效概率情形时表现突出。此外,通过引入共同安全域的概念,该方法解决了多个失效面下结构可靠性分析的难题。
关键词: 概率密度演化方法, β 球, 赋得概率, 结构系统可靠性, 物理综合法, χ 方分布
The Physical Synthesis Method (PSM) stands out as a robust framework for conducting structural reliability analyses due to its clear conceptual foundation. However, this approach often necessitates significant computational resources when addressing scenarios with small failure probabilities. In response to this challenge, this study introduces a layer assigned probability space partition method designed to identify pivotal points based on the ultimate bearing capacity failure criterion of structural components within the PSM framework. Drawing inspiration from Harbitz's β-sphere, this method effectively utilizes the minimum reliability index of components to discern essential representative points within the probability space, thus streamlining computations. The efficacy of this approach is showcased through two case studies: a simply supported beam and a six-story reinforced concrete frame. The outcomes demonstrate that the proposed method, when integrated with PSM, exhibits a substantial enhancement in efficiency compared to the conventional Monte Carlo method. Besides, under equivalent computational resources, it achieves superior computational accuracy compared to the importance sampling method, particularly in scenarios with small failure probabilities. Furthermore, by introducing the notion of a common safe domain, this method addresses challenges in structural reliability analyses involving multiple failure surfaces.
KeywordsProbability density evolution method; β-sphere; Assigned probability; Structural system reliability; Physical synthesis method; Chi-square distribution

图 1: Harbitz β 球

Fig. 1. Harbitz's β-sphere

图 2: 共同安全域的概念

Fig. 2. Concept of common safe domain

图 3: 概率与共同安全域半径的关系

Fig. 3. Relationship between probability and the radius of common safe domain

图 4: 代表性点的赋得概率

Fig. 4. Assigned probability of representative points

图 5: 第 1 层与第 2 层代表性点的赋得概率

Fig. 5. Assigned probability of representative points in layer 1 and layer 2

图 6: 所提方法的流程图

Fig. 6. Flowchart of the proposed method

图 7: 钢筋混凝土简支梁

Fig. 7. A simply supported RC beam

图 8: 结构失效概率随广义加载时间的演化

Fig. 8. Structural failure probability evolution along generalized loading time

图 9: 钢筋混凝土框架结构的三维模型

Fig. 9. 3D model of a RC frame structure

图 10: 一层测试梁的位置

Fig. 10. Location of the examined beams in the first floor

作者信息 | Authors

白洋 Yang Bai

同济大学 (Tongji University) 土木工程学院

宁超列 Chao-Lie Ning

同济大学 (Tongji University) 土木工程学院

李杰 Jie Li通讯作者 (Corresp.) 
中国科学院院士
同济大学 (Tongji University) 土木工程学院

Email: lijie@tongji.edu.cn



律梦泽 M.Z. Lyu | 编辑 (Ed) 

P.D. Spanos | 审校 (Rev)

陈建兵 J.B. Chen | 审校 (Rev)

彭勇波 Y.B. Peng | 审校 (Rev)

工程可靠性与随机力学
同济大学工程可靠性与随机力学国际联合研究中心 (JCERSM) 成立于2016年。中心中方主任为中国科学院院士李杰教授,外方主任为美国工程院院士、中国科学院外籍院士 Spanos 教授。
 最新文章