新论文 | 最大边缘扩展 F 偏差的量化特性与​随机参数结构非线性随机响应分析的高效选点策略

文摘   2024-11-16 12:08   北京  
Quantitative property of MF-discrepancy and efficient point-selection strategy for the nonlinear stochastic response analysis of structures with random parameters

最大边缘扩展 F 偏差的量化特性与随机参数结构非线性随机响应分析的高效点策略

引用格式 | Cited by
Chen JB, Huang X, Li J, 2024. Quantitative property of MF-discrepancy and efficient point-selection strategy for the nonlinear stochastic response analysis of structures with random parameters. Probabilistic Engineering Mechanics, 78: 103708.
DOI: 10.1016/j.probengmech.2024.103708
摘要 | Abstract
含随机参数的高维强非线性系统响应分析一直是随机计算力学中的一项重大挑战。为应对这一挑战,已发展了一些高效点集方法,其中以低偏差为代表的全局点集方法对生成高效代表性点集至关重要。已引入了包括扩展 F 偏差和广义 F 偏差在内的几类偏差以评估代表性点集的均匀性和有效性。在此背景下,本文提出了最大边缘扩展 F 偏差,它是广义 F 偏差的扩展形式,然后详细研究了最大边缘扩展 F 偏差的性质。推导了最大边缘扩展 F 偏差的概率分布,包括对随机点集的严格证明和基于某些一般点集的假设模型。建立了广义 Koksma-Hlawka 不等式来控制最不利误差估计。给出了最大边缘扩展 F 偏差的下界限,并提出了两个直观的定量指标来衡量最大边缘扩展 F 偏差的优劣。基于下界限,提出了一类增强选点策略,并建立了统一的理论框架来对最大边缘扩展 F 偏差进行最小化。在该框架中,对最大边缘扩展 F 偏差进行局部最小化可导出两步选点方法,并提出了一种基于最大边缘扩展 F 偏差全局最小化的点新策略,验证了该策略的有效性和鲁棒性,特别是对于高维情形。研究了几个数值算例,包括 2 层剪切框架、10 层剪切框架和有限元法建模的 10 层钢筋混凝土框架结构,验证了所提选点策略的有效性和鲁棒性。
关键词: 最大边缘扩展 F 偏差广义 F 偏差扩展 F 偏差下界限, 选点策略, 非线性系统, 随机动力学
The response analysis of high-dimensional and strongly nonlinear systems with random parameters remains a significant challenge in stochastic computational mechanics. To address this challenge, some methods based on the high-efficacy point sets have been developed, in which efficient global-point-set methods represented by low-discrepancy are of paramount importance in generating representative point sets. Several discrepancies including the extended F-discrepancy (EF-discrepancy) and the generalized F-discrepancy (GF-discrepancy) have been introduced to assess the uniformity and the efficacy of a representative point set. In such context, a maximal marginal EF-discrepancy (MF-discrepancy), which is an extended form of the GF-discrepancy, is proposed in this paper and then the properties of the MF-discrepancy are studied in detail. The probability distribution of the MF-discrepancy is derived, including a rigorous proof for random point sets and a model based on an assumption for some generic point sets. A generalized Koksma-Hlawka inequality is established accordingly to govern the worst error estimate. The lowest bound of the MF-discrepancy is given, and two intuitive quantitative indices are proposed to measure the goodness of the MF-discrepancy. Based on the lowest bound, an enhanced point-selection strategy with a unified theoretical framework for minimizing the MF-discrepancy is proposed. In this framework, locally minimizing the MF-discrepancy yields the two-step point-selection method, and a new point-selection strategy is proposed based on the global minimization of the MF-discrepancy, which is verified to be efficient and robust, especially in high-dimensional cases. Several numerical examples, including a 2-story shear frame, a 10-story shear frame, and a 10-story reinforced concrete frame structure modeled by the finite element method, are studied, verifying the efficiency and the robustness of the proposed point-selection strategy.
KeywordsMF-Discrepancy; GF-Discrepancy; EF-Discrepancy; Lowest round; Point-selection strategy; Nonlinear system; Stochastic dynamics.
创新点 | Highlights
  • 多变量空间点集的最大边缘扩展 F 偏差新概念

  • 最大边缘扩展 F 偏差的概率分布和上下限

  • 基于最大边缘扩展 F 偏差的数值积分最不利误差估计

  • 基于最大边缘扩展 F 偏差全局最小化的选点策略
  • 在含多随机参数的结构响应分析中验证了其有效性

  • A new MF-discrepancy for point sets in multi-variate space.

  • The probability distribution and the upper-lower bound of MF-discrepancy.

  • The worst error estimation for numerical integral based on the MF-discrepancy.
  • A point-selection strategy based on the global minimization of the MF-discrepancy.
  • The efficacy verified in responses of structures with multiple random parameters.
图 1: 最大边缘扩展 F 偏差扩展 F 偏差之间的关系

Fig. 1. Relationship between MF-discrepancies and EF-discrepancies

图 2: 最大边缘扩展 F 偏差对数的概率密度函数曲线

Fig. 2. PDF curves for the logarithm of the MF-discrepancy

图 3: 最大边缘扩展 F 偏差分布的蒙特卡罗模拟

Fig. 3. Monte Carlo simulation of the distribution of MF-discrepancies

图 4: 最大边缘扩展 F 偏差与点数的关系

Fig. 4. MF-discrepancy versus the point number

图 5: 随机等权重点集与随机赋得概率点集的最大边缘扩展 F 偏差对比

Fig. 5. A comparison of MF-discrepancies between RNEP and RNAP

图 6: 最大边缘扩展 F 偏差局部最小化与全局最小化相应的边缘概率分布函数

Fig. 6. Marginal CDFs corresponding to the local minimization and the global minimization of the MF-discrepancy

图 7: 最大边缘扩展 F 偏差局部最小化点集与随机赋得概率点集最大边缘扩展 F 偏差对比

Fig. 7. A comparison of the MF-discrepancy between L-MMFP and RNAP

图 8: 两层剪切结构

Fig. 8. 2-Story shear structure

图 9: 典型滞回曲线样本

Fig. 9. A typical hysteretic curve sample

图 10: 一层位移均值与标准差的均值与标准误差

Fig. 10. Mean and the standard errors of the mean and the standard deviation for the displacements of the first floor

图 11: 一层位移均值与标准差的相对误差

Fig. 11. Relative errors of the mean and the standard deviation for the displacements of the first floor

图 12: 10 层剪切结构

Fig. 12. 10-story shear structure

图 13: 典型滞回曲线样本

Fig. 13. A typical hysteretic curve sample

图 14: 一层位移均值、标准误差与相对误差

Fig. 14. Mean, the standard errors and the relative errors for the displacements of the first floor (s =10)

图 15: 一层位移均值、标准误差与相对误差

Fig. 15. Mean, the standard errors and the relative errors for the displacements of the first floor (s =20)

图 16: 一层位移均值、标准误差与相对误差

Fig. 16. Mean, the standard errors and the relative errors for the displacements of the first floor (s = 60)

图 17: 10 层框架结构

Fig. 17. 10-story frame structure

图 18: 应力-应变曲线的典型样本

Fig. 18. Typical samples of stress-strain curves

图 19: 顶层位移的均值、标准差与相对误差

Fig. 19. Mean, the standard deviation and relative errors for the displacement of the top floor (s = 8)

图 20: 顶层位移的均值、标准差相对误差

Fig. 20. Mean, the standard deviation and relative errors for the displacement of the top floor (s = 60)

图 21: 基于最大边缘扩展 F 偏差分布抽样

Fig. 21. Sampling based on the distribution of MF-discrepancies

作者信息 | Authors

陈建兵 Jian-Bing Chen通讯作者 (Corresp.)
同济大学 (Tongji University) 土木工程学院

Email: chenjb@tongji.edu.cn

黄欣 Xin Huang

同济大学 (Tongji University) 土木工程学院

李杰 Jie Li

中国科学院院士
同济大学 (Tongji
University) 土木工程学院



律梦泽 M.Z. Lyu | 编辑 (Ed) 

P.D. Spanos | 审校 (Rev)

陈建兵 J.B. Chen | 审校 (Rev)

彭勇波 Y.B. Peng | 审校 (Rev)

工程可靠性与随机力学
同济大学工程可靠性与随机力学国际联合研究中心 (JCERSM) 成立于2016年。中心中方主任为中国科学院院士李杰教授,外方主任为美国工程院院士、中国科学院外籍院士 Spanos 教授。
 最新文章