Probabilistic response determination of high-dimensional nonlinear dynamical systems enforced by parametric multiple Poisson white noises
研究背景
然而,对于路径非连续的高维问题,例如 Poisson 激励下的高维系统,其瞬时概率密度函数仍然难以确定。现有的降维概率密度演化方程理论框架无法给出其控制偏微分方程的有限阶截断,而高阶偏微分项的影响难以作为小量被忽略。在此背景下,本文针对 Poisson 白噪声激励下的高维系统,推导了其任意感兴趣量瞬时概率密度函数的一维偏微分-积分控制方程,将原本难以有效截断无穷阶偏微分项转化为积分项,从而巧妙避免了概率密度控制方程难以精确截断的问题,并证明了这一控制方程 (文中仍称为降维概率密度演化方程) 是精确成立的,保证了有效数值求解的精度与效率。
方法概述
不失一般性,Poisson 白噪声激励下的高维随机动力系统的运动方程可以写为
其中系统遭受的多重参数化 Poisson 激励可以表达为
经推导可以给出,系统中任意感兴趣响应过程的瞬时概率密度函数满足的控制方程为
这是一个一维偏微分-积分方程,文中称为降维概率密度演化方程。一旦确定了方程中的本征漂移函数与本征发生率函数,方程就很容易数值求解。具体推导过程可详见论文。
算例 1: Poisson 白噪声下的多维 Ornstein-Uhlenbeck 过程
Poisson 白噪声驱动下 Ornstein-Uhlenbeck 系统的瞬时概率分布
Poisson 白噪声驱动下 Ornstein-Uhlenbeck 系统的标准差与峰度
Poisson 白噪声驱动下 Ornstein-Uhlenbeck 系统的典型样本路径
算例 2: 带 SOS 通路的基因开关
蛋白质 B 的瞬时概率分布
蛋白质 B 的前四阶矩
本征发生率函数与蛋白质 A 与 B 的典型样本路径
算例 3: 陆地水平衡系统
土壤相对湿度的瞬时概率分布
土壤相对湿度的前四阶矩
土壤相对湿度的本征漂移函数与本征发生率函数
求解降维概率密度演化方程的挑战之一在于获得本征漂移函数和本征发生率函数的表达。对于 Poisson 白噪声驱动下的一般高维非线性系统,其通常难以解析获得。然而可证明,本征漂移函数和本征发生率函数可以通过条件期望函数表达,从而通过确定性分析数据进行识别。结合根据数据数值识别出的本征漂移函数和本征发生率函数表达,数值求解降维概率密度演化方程,可以较高精度获得感兴趣量瞬时概率密度函数的数值解。
总之,本研究推动了参数化 Poisson 白噪声激励下高维非线性随机动力系统的进展。所推导的降维概率密度演化方程及其相关数值算法为精确高效地预测某一感兴趣量的瞬时概率密度函数提供了统一框架。通过克服以往方法的局限性,所提方法为研究复杂随机系统开辟了新途径,并有潜力推动多个科学和工程学科的进一步发展。
DOI:
10.1007/s11071-024-09592-x
陈建兵 Jian-Bing Chen
同济大学土木工程学院教授, 国家杰出青年科学基金获得者
邮箱:chenjb@tongji.edu.cn
https://jcersm.tongji.edu.cn/1e/f9/c13092a139001/page.htm
主页:
相关参考文献:
[1] Chen JB, Lyu MZ, 2022. Globally-evolving-based generalized density evolution equation for nonlinear systems involving randomness from both system parameters and excitations [J]. Proceedings of the Royal Society A - Mathematical Physical & Engineering Sciences, 478 (2264): 20220356.
[2] Chen JB, Lyu JH, Spanos PD, Li J, 2024. Stochastic response analysis of a spar-type fowt subjected to extreme waves by a novel filter wave model and the DR-PDEE [J]. Journal of Engineering Mechanics, 150 (4): 04024009.
[3] Chen JB, Lyu MZ, 2024. Probabilistic response determination of high-dimensional nonlinear dynamical systems enforced by parametric multiple Poisson white noises [J]. Nonlinear Dynamics, 112: 11283-11298.
[4] Hao TT, Yan WJ, Chen JB, Sun TT, Yuen KV, 2024. Multi-output multi-physics-informed neural network for learning dimension-reduced probability density evolution equation with unknown spatio-temporal-dependent coefficients [J]. Mechanical Systems & Signal Processing, 220: 111683.
[5] Luo Y, Chen JB, Spanos PD, 2022a. Determination of monopile offshore structure response to stochastic wave loads via analog filter approximation and GV-GDEE procedure [J]. Probabilistic Engineering Mechanics, 67: 103197.
[6] Luo Y, Spanos PD, Chen JB, 2022b. Stochastic response determination of multi-dimensional nonlinear systems endowed with fractional derivative elements by the GE-GDEE [J]. International Journal of Non-Linear Mechanics, 147: 104247.
[7] Luo Y, Lyu MZ, Chen JB, Spanos PD, 2023. Equation governing the probability density evolution of multi-dimensional linear fractional differential systems subject to Gaussian white noise [J]. Theoretical & Applied Mechanics Letters, 13: 100436.
[8] Lyu MZ, Chen JB, 2021. First-passage reliability of high-dimensional nonlinear systems under additive excitation by the ensemble-evolving-based generalized density evolution equation [J]. Probabilistic Engineering Mechanics, 63: 103119.
[9] Lyu MZ, Chen JB, 2022. A unified formalism of the GE-GDEE for generic continuous responses and first-passage reliability analysis of multi-dimensional nonlinear systems subjected to non-white-noise excitations [J]. Structural Safety, 98: 102233.
[10] Lyu MZ, Chen JB, Shen JX, 2024. Refined probabilistic response and seismic reliability evaluation of high-rise reinforced concrete structures via physically driven dimension-reduced probability density evolution equation [J]. Acta Mechanica, 235: 1535-1561.
[11] Sun TT, Chen JB, 2022. Physically driven exact dimension-reduction of a class of nonlinear multi-dimensional systems subjected to additive white noise [J]. ASCE-ASME Journal of Risk & Uncertainty in Engineering Systems, Part A - Civil Engineering, 8 (2): 04022012.
[12] Sun TT, Lyu MZ, Chen JB, 2023. Property of intrinsic drift coefficients in globally-evolving-based generalized density evolution equation for the first-passage reliability assessment [J]. Acta Mechanica Sinica, 39: 722471.
[13] 律梦泽, 陈建兵, 2024. 非平稳随机激励下高维非线性系统可靠度分析的概率密度全局演化方法 [J]. 振动工程学报, 37 (6): 903-914.