新论文 | ​​考虑混凝土单轴本构关系 Young 氏模量随机场的修正细观随机断裂模型

文摘   2024-07-29 11:00   德国  
The modified mesoscopic stochastic fracture model incorporating the random field of Young's modulus for the uniaxial constitutive law of concrete

考虑混凝土单轴本构关系 Young 氏模量随机场的修正细观随机断裂模型

引用格式 | Cited by
Liu YY, Chen JB, Li J, 2024. The modified mesoscopic stochastic fracture model incorporating the random field of Young's modulus for the uniaxial constitutive law of concreteProbabilistic Engineering Mechanics, 75: 103585.
DOI: 10.1016/j.probengmech.2024.103585

摘要 | Abstract

混凝土是一种多相复合材料,在不同情形下表现出非线性和随机性。细观随机断裂模型 (mesoscopic stochastic fracture model, MSFM) 用于刻划混凝土的本构行为。然而,它在量化上升段应力—应变曲线随机性方面仍不够准确,可能会显著低估强度的变异性。为了解决上述缺陷,本文提出了细观随机断裂模型的两类修正。在修正模型中,除细观尺度断裂应变的随机场外,细观弹簧的 Young 氏模量也分别由单一随机变量或随机场来量化。推导了修正模型中混凝土单轴受压应力—应变曲线的均值和标准差数学表达。此外,基于不同强度等级混凝土的完整受压应力—应变关系试验数据,结合遗传算法和降维算法,确定了两类修正细观随机断裂模型的参数。结果表明,涉及细观尺度断裂应变和细观 Young 氏模量随机性的修正模型在捕捉混凝土强度变异性和上升段应力—应变关系标准差方面,精度比现有细观随机断裂模型大大提高。
关键词随机损伤力学, 混凝土本构模型, 细观尺度 Young 氏模量, 随机场, 参数识别
Concrete is a multi-phase composite material that exhibits nonlinear and random characteristics in various contexts. The mesoscopic stochastic fracture model (MSFM) was developed to capture the constitutive behaviors of concrete. However, it is still not accurate enough to quantify the randomness of stress-strain curves in the ascending phase, and the variability of the strength might be considerably underestimated. In this paper, to remedy the above deficiencies, two alternative modifications to the MSFM are proposed. In the modified models, in addition to the random field of mesoscale fracture strain, Young's modulus of meso-springs is also quantified by a single random variable or a random field, respectively. The mathematical expressions for the mean and standard deviation of the uni-axial compressive stress-strain curves of concrete in the modified models are derived. Furthermore, based on the data from tested complete compressive stress-strain relationships of concrete with different strength grades, the parameters in the two modified MSFMs are identified by combining the genetic algorithm and a dimension-reduction algorithm. The results show that the accuracy of the modified models involving the randomness from both the mesoscale fracture strain and the mesoscale Young's modulus is greatly improved compared to the existing MSFM in capturing both the variability of concrete strength and the standard deviation in the ascending phase of the stress-strain relationship of concrete.
KeywordsStochastic damage mechanics; Concrete constitutive model; Mesoscale Young's modulus; Random field; Parameter identification

创新点 | Highlights

  • 对混凝土细观随机断裂模型进行了两类修正
  • 将细观尺度 Young 氏模量随机性纳入细观随机断裂模
  • 给出了混凝土应力—应变曲线均值和标准差表达式
  • 在量化混凝土强度变异性方面,精度大幅提高

  • Two modifications to the mesoscopic stochastic fracture model (MSFM) for concrete
  • Incorporating the randomness of mesoscale Young's modulus into MSFM
  • Expressions of the mean and standard deviation of stress-strain curve of concrete
  • The accuracy of quantifying the variability of concrete strength greatly improved

图 1: 细观随机断裂模型

Fig. 1. Mesoscopic stochastic fracture model

图 2: 细观随机断裂模型

Fig. 2. Mesoscopic stochastic fracture model

图 3: 离散型与连续型的应力—应变响应

Fig. 3. Stress-strain responses of discrete bundle and continuum bundle

图 4: 两类修正细观随机断裂模型的参数识别流程图

Fig. 4. Flow chart for parameter identification of MSFM-M1 and MSFM-M2

图 5: Young 氏模量直方图

Fig. 5. Histograms of Young's modulus

图 6: 应力—应变曲线标准差对比

Fig. 6. Comparison of standard deviation of stress-strain curves

图 7: 数据子集的应力—应变曲线标准差对比

Fig. 7. Comparison of standard deviation of stress-strain curves of data subset

图 8: 均值加/减二倍标准差覆盖区域对比

Fig. 8. Comparison of the area covered by the mean plus or minus two times standard deviation

图 9: 三个模型与试验数据之间的误差对比

Fig. 9. Comparison of errors between three models and experimental results

图 10: 基于陶金聚等人数据的不同分布类型概率密度函数

Fig. 10. PDFs of different distribution types based on data from Tao et al. (2021)

图 11: 基于李杰等人数据的不同分布类型概率密度函数

Fig. 11. PDFs of different distribution types based on data from Li et al. (2021)

图 12: 基于晏小欢等人 C30 数据的不同分布类型概率密度函数

Fig. 12. PDFs of different distribution types based on data from Yan et al. (2015) - C30

图 13: 基于晏小欢等人 C40 数据的不同分布类型概率密度函数

Fig. 13. PDFs of different distribution types based on data from Yan et al. (2015) - C40

图 14: 基于晏小欢等人 C50 数据的不同分布类型概率密度函数

Fig. 14. PDFs of different distribution types based on data from Yan et al. (2015) - C50

图 15: 基于陈建兵等人数据的不同分布类型概率密度函数

Fig. 15. PDFs of different distribution types based on data from of Chen et al. (2018)

图 16: 基于陶金聚等人数据的不同应变处应力概率密度函数

Fig. 16. PDFs of stress at corresponding strains based on data from Tao et al. (2021)

图 17: 基于李杰等人数据的不同应变处应力概率密度函数

Fig. 17. PDFs of stress at corresponding strains based on data from Li et al. (2021)

图 18: 基于晏小欢等人 C30 数据的不同应变处应力概率密度函数

Fig. 18. PDFs of stress at corresponding strains based on data from Yan et al. (2015) - C30

图 19: 基于晏小欢等人 C40 数据的不同应变处应力概率密度函数

Fig. 19. PDFs of stress at corresponding strains based on data from Yan et al. (2015C40

图 20: 基于晏小欢等人 C50 数据的不同应变处应力概率密度函数

Fig. 20. PDFs of stress at corresponding strains based on data from Yan et al. (2015C50

图 21: 基于陈建兵等人数据的不同应变处应力概率密度函数

Fig. 21. PDFs of stress at corresponding strains based on data from Chen et al. (2018)

作者信息 | Authors

刘洋艺 Yang-Yi Liu 

同济大学 (Tongji University土木工程学院

陈建兵 Jian-Bing Chen通讯作者 (Corresp.) 
同济大学 (Tongji University土木工程学院

Email: chenjb@tongji.edu.cn

李杰 Jie Li 

中国科学院院士
同济大学 (Tongji University土木工程学院



律梦泽 M.Z. Lyu | 编辑 (Ed) 

P.D. Spanos | 审校 (Rev)

陈建兵 J.B. Chen | 审校 (Rev)

彭勇波 Y.B. Peng | 审校 (Rev)

工程可靠性与随机力学
同济大学工程可靠性与随机力学国际联合研究中心 (JCERSM) 成立于2016年。中心中方主任为中国科学院院士李杰教授,外方主任为美国工程院院士、中国科学院外籍院士 Spanos 教授。
 最新文章