Special Issue: Fractional Calculus & Stochastic Dynamics本期《概率工程力学 (Probabilistic Engineering Mechanics, PREM)》特刊题为:分数阶微积分与随机动力学,包含 9 篇论文,精选主题丰富且方法多样。本期特刊旨在提供一个促进随机力学 (包括分数阶微积分算子) 持续多样活动的论坛。
论文涵盖了广泛的随机力学主题,根据第一作者姓氏字母顺序排列。希望可促进随机力学这一充满活力领域的加速发展。
客座编辑感谢期刊主编 Pol D. Spanos 教授的盛情邀请,能够有机会处理本期特刊精选论文;并对每位作者表示感谢,是他们的贡献促使本期特刊顺利完成。
This special issue of Probabilistic Engineering Mechanics (PREM) entitled: Fractional Calculus & Stochastic Dynamics, comprises 9 papers, selected for thematic richness, and methodological diversity.The main objective of this special issue is to serve as a forum for promoting sustained and multidimensional activity in Stochastic Mechanics, including fractional differintegral operators.The papers, which cover a broad spectrum on Stochastic Mechanics themes, are arranged in alphabetical order based on the name of the first author. It is hoped that this issue will contribute to the already accelerating expansion of the vibrant field of Stochastic Mechanics.The Guest Editors thank Professor P. D. Spanos, the Editor of PREM, for his kind invitation to acquire and process the selected papers in this special issue. Appreciation is expressed to each and every of the authors, whose contributions constitute the very basis for the success of the issue.客座编辑 | Guest Editors
| Antonina Pirrotta意大利巴勒莫大学 (University of Palermo) 教授Email: antonina.pirrotta@unipa.it |
| Mario Di Paola意大利巴勒莫大学 (University of Palermo) 教授Shinozuka 奖章, IASSAR 研究奖获得者Email: mario.dipaola@unipa.it |
| Massimiliano Zingales意大利巴勒莫大学 (University of Palermo) 教授Email: massimiliano.zingales@unipa.it |
The tempered space-fractional Cattaneo equation
作者: L. Beghin (意大利罗马第一大学), R. Garra (意大利研究委员会), F. Mainardi (意大利博洛尼亚大学), G. Pagnini (西班牙巴斯克应用数学中心)DOI: 10.1016/j.probengmech.2022.103374Stochastic analysis of small-scale beams with internal and external damping
作者: F.P. Pinnola, M.S. Vaccaro (意大利那不勒斯费德里科二世大学)DOI: 10.1016/j.probengmech.2022.1034013. 演变随机激励下含分数阶导数项的非线性振子响应: 基于积分 Laplace 方法的路径积分法Response of nonlinear oscillators with fractional derivative elements under evolutionary stochastic excitations: A path Integral approach based on Laplace’s method of integration
作者: A. Di Matteo (意大利巴勒莫大学)DOI: 10.1016/j.probengmech.2022.1034024. 随机激励下非线性分数阶振子蒙特卡罗模拟的改进虚拟力法Improved pseudo-force approach for Monte Carlo Simulation of non-linear fractional oscillators under stochastic excitation
作者: A. Sofi (意大利雷焦卡拉布里亚地中海大学), G. Muscolino (意大利墨西拿大学)DOI: 10.1016/j.probengmech.2022.1034035. 含分数阶导数项非线性振子随机响应确定的 Wiener 路径积分技术: 自由边界约束变分格式A Wiener path integral technique for determining the stochastic response of nonlinear oscillators with fractional derivative elements: A constrained variational formulation with free boundaries
作者: 张远进 Y.J. Zhang (武汉理工大学), I.A. Kougioumtzoglou (美国哥伦比亚大学), 孔凡 F. Kong (合肥工业大学)DOI: 10.1016/j.probengmech.2022.1034106. 演变随机激励下含分数阶导数项非线性振子的生存概率确定Survival probability determination of nonlinear oscillators with fractional derivative elements under evolutionary stochastic excitation
作者: V.C. Fragkoulis (德国莱布尼茨汉诺威大学), I.A. Kougioumtzoglou (美国哥伦比亚大学)DOI: 10.1016/j.probengmech.2022.1034117. 含分数阶比例积分导数控制与 Gauss 白噪声激励的混合能量收集器分岔与稳定性分析Bifurcation and stability analysis of a hybrid energy harvester with fractional-order proportional–integral–derivative controller and Gaussian white noise excitations
作者: 孙亚辉 Y.H. Sun (广东工业大学), 孙永涛 Y.T. Sun (天津大学), 杨勇歌 Y.G. Yang (广东工业大学), 徐伟 W. Xu (西北工业大学)DOI: 10.1016/j.probengmech.2023.103464On the numerical solution of fractional differential equations under white noise processes
作者: A. Burlon (意大利雷焦卡拉布里亚大学)DOI: 10.1016/j.probengmech.2023.1034659. 含分数阶导数项系统非平稳响应统计估计的扩展统计线性化方法Extended statistical linearization approach for estimating non-stationary response statistics of systems comprising fractional derivative elements
作者: B. Pomaro (意大利帕多瓦大学), P.D. Spanos (美国莱斯大学)DOI: 10.1016/j.probengmech.2023.103471