点击蓝字关注我们
虚拟专辑
1
以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展
王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平
无机材料学报 2024, 39 (6): 634-646.
功率半导体器件高电压、大电流、高功率密度的发展趋势, 对器件中陶瓷基板的散热能力和可靠性提出了更高的要求, 兼具高热导率和优异力学性能的氮化硅陶瓷作为功率半导体器件的首选散热基板材料受到了广泛关注。目前氮化硅陶瓷热导率的实验值与理论值存在较大差距, 高温、长时间保温的制备条件不仅会使晶粒过分长大,削弱其力学性能, 而且会造成成本高企, 限制了其规模化应用。晶格氧缺陷是影响氮化硅陶瓷热导率的主要因素, 通过筛选非氧化物烧结助剂降低体系中的氧含量, 调节液相的组成和性质并构建“富氮-缺氧”的液相, 调控液相中的溶解析出过程, 促进氮化硅陶瓷晶格氧的移除及双峰形貌的充分发育, 从而实现氮化硅陶瓷热导率-力学性能的协同优化是目前研究的热点。本文基于元素分类综述了当前国内外开发的非氧化物烧结助剂体系, 着重从液相调节和微观形貌调控的角度介绍了非氧化物烧结助剂改善氮化硅陶瓷热导率的作用机理, 分析了晶粒发育、形貌演变规律和晶格氧移除机制, 并展望了高导热氮化硅陶瓷的未来发展前景。
2
功率模块封装用高强度高热导率Si3N4陶瓷的研究进展
付师, 杨增朝, 李江涛
无机材料学报 2023, 38 (10): 1117-1132.
随着以SiC和GaN为代表的第三代宽禁带半导体的崛起, 电力电子器件向高输出功率和高功率密度的方向快速发展, 对用于功率模块封装的陶瓷基板材料提出更高的性能要求。传统的Al2O3和AlN陶瓷由于热导率较低或力学性能较差, 均不能满足新一代功率模块封装的应用需求, 相较之下, 新发展的Si3N4陶瓷因兼具高强度和高热导率, 成为最具潜力的绝缘性散热基板材料。近年来, 研究人员通过筛选有效的烧结助剂体系, 并对烧结工艺进行优化, 在制备高强度高热导率Si3N4陶瓷方面取得一系列突破性进展。另外, 伴随覆铜Si3N4陶瓷基板工程应用的推进, 对其制成的基板的力、热和电学性能的评价也成为研究热点。本文从影响Si3N4陶瓷热导率的关键因素出发, 重点对通过烧结助剂的选择和烧结工艺的改进来提高Si3N4陶瓷热导率的国内外工作进行综述。此外, 首次系统总结并介绍了Si3N4陶瓷基板的介电击穿强度以及覆铜后性能评价研究的最新进展, 最后展望了高热导率Si3N4陶瓷基板的未来发展方向。
3
低温反应熔渗工艺制备AlN-SiC复相陶瓷及其性能研究
孙小凡, 陈小武, 靳喜海, 阚艳梅, 胡建宝, 董绍明
无机材料学报 2023, 38 (10): 1223-1229.
AlN-SiC复相陶瓷力学性能好、导热性与抗高温氧化性能优异, 作为纤维增强陶瓷基复合材料的基体材料具有良好的应用前景。本研究以Si-Al合金为熔渗介质, 多孔C-Si3N4为熔渗预制体, 对低温反应熔渗制备AlN-SiC复相陶瓷及其性能展开研究。研究发现Si-Al合金形态对反应熔渗过程存在着重要的影响: 以Si-Al合金粉末作为熔渗介质时, 反应熔渗过程中在Si-Al/C-Si3N4界面处将原位形成一层致密的Al-O阻挡层, 从而严重阻碍Si-Al熔体向C-Si3N4预制体内部的渗透, 使反应熔渗过程难以进行;以Si-Al合金锭作为熔渗介质时, Si-Al熔体可以深入渗透到多孔C-Si3N4预制体内部, 并通过进一步反应, 原位形成致密的AlN-SiC复相陶瓷。材料性能测试表明, 所得材料的力学和热学性能与其内部残余硅含量关系密切。随着残余硅含量降低, 材料强度明显提升, 而热导率有所下降。含质量分数4%残余硅的AlN-SiC复相陶瓷, 抗弯强度达到320.1 MPa, 热导率达26.3 W·m-1·K-1, 材料的强度几乎与传统反应烧结SiC陶瓷相当, 并深入探讨了出现上述现象的本质原因。本研究对低温熔渗工艺制备SiCf/AlN-SiC复合材料具有重要的指导意义。
4
铁尾矿及其反应烧结多孔陶瓷的制备与性能研究
吴松泽, 周洋, 李润丰, 刘晓倩, 李翠伟, 黄振莺
无机材料学报 2023, 38 (10): 1193-1199.
为拓展铁尾矿的资源化利用途径, 本研究分别以细颗粒高硅铁尾矿、铁尾矿+石墨粉以及铁尾矿+石墨粉+碳化硅粉为原料, 采用泡沫注凝成形-常压烧结、泡沫注凝成形-反应烧结和模压成形-反应烧结工艺制备了铁尾矿多孔陶瓷和三种以碳化硅为主晶相的多孔陶瓷。通过DSC-TG和XRD分析, 研究了铁尾矿自身的烧结过程以及铁尾矿与石墨之间的碳热还原反应烧结过程, 对比分析了四种多孔陶瓷材料的孔隙率、压缩强度、热导率等性能。结果表明, 以铁尾矿为原料可制备具有较高孔隙率(87.2%)、压缩强度(1.37 MPa)和低热导率(0.036 W/(m·K))的铁尾矿多孔陶瓷, 它是一种高效保温隔热材料; 利用铁尾矿与石墨之间的碳热还原反应可获得碳化硅多孔陶瓷, 其热导率显著提高, 但强度偏低; 而在原料中加入部分碳化硅, 可以明显改善多孔陶瓷的压缩强度, 获得具有高孔隙率(91.6%)、较高压缩强度(1.19 MPa)和热导率(0.31 W/(m·K))的碳化硅多孔陶瓷, 它可作为轻质导热材料或复合相变材料的载体使用; 与泡沫注凝成形工艺相比, 采用模压成形工艺制备的碳化硅多孔陶瓷虽然孔隙率有所降低(79.3%), 但热导率得到显著提升(1.15 W/(m·K)), 同时原料和生产成本大幅降低, 有利于实现产品的工业化生产。
5
热管理用高导热碳化硅陶瓷基复合材料研究进展
陈强, 白书欣, 叶益聪
无机材料学报 2023, 38 (6): 634-646.
碳化硅陶瓷基复合材料以其高比强度、高比模量、高导热、良好的耐烧蚀性能、高温抗氧化性、抗热震性能等特性, 广泛应用于航空航天、摩擦制动、核聚变等领域, 成为先进的高温结构及功能材料。本文综述了高导热碳化硅陶瓷基复合材料制备及性能等方面的最新研究进展。引入高导热相, 如金刚石粉、中间相沥青基碳纤维等用以增强热输运能力; 优化热解炭炭与碳化硅基体界面用以降低界面热阻; 热处理用以获得结晶度更高、导热性能更好的碳化硅基体; 设计预制体结构用以建立连续导热通路等方法, 提高碳化硅陶瓷基复合材料的热导率。此外, 本文展望了高导热碳化硅陶瓷基复合材料后续研究方向, 即综合考虑影响碳化硅陶瓷基复合材料性能要素, 优化探索高效、低成本的制备工艺; 深入分析高导热碳化硅陶瓷基复合材料导热机理, 灵活运用复合材料结构与性能的构效关系, 以期制备尺寸稳定、具有优异热物理性能的各向同性高导热碳化硅陶瓷基复合材料。
6
柔性有机硅气凝胶的制备及其高温无机化转变研究
罗艺, 夏书海, 牛波, 张亚运, 龙东辉
无机材料学报 2022, 37 (12): 1281-1288.
二氧化硅气凝胶以其低密度、高孔隙率等特性在高温隔热领域显示出广阔的应用前景, 但其脆性和高成本的超临界干燥方式限制了其应用。本研究以乙烯基三甲氧基硅烷(VTMS)和乙烯基甲基二甲氧基硅烷(VMDMS)为前驱体, 通过溶胶凝胶、常压干燥制备了具有高柔性的海绵状有机硅气凝胶, 并研究了前驱体摩尔比对气凝胶微观结构和压缩回弹性能的影响, 以及气凝胶分别在高温有氧和无氧环境中的无机化转变过程。结果表明, 随着前驱体中VTMS/VMDMS比例增加, 气凝胶颗粒变小且堆积更紧密, 其压缩回弹性能也随之降低; 在800 ℃空气氛围中, 气凝胶通过侧基的氧化和主链Si-O-Si的断裂、重排转化为无机SiO2; 在800 ℃ N2氛围中, 气凝胶通过裂解反应转化为无机SiO2和游离碳的混合体, 1000~1400 ℃进一步处理后SiO2和游离碳经碳热还原反应生成SiO4、SiCO3、SiC2O2和SiC3O等无定形的Si-O-C结构和少量β-SiC纳米线; 经1200 ℃碳热还原反应生成的Si-O-C结构具有最优的耐高温氧化性能, 可为制备耐高温氧化Si-O-C气凝胶提供参考。
7
熔盐法合成高导热磷化硼及其热管理性能研究
胡佳军, 王凯, 侯鑫广, 杨婷, 夏鸿雁
无机材料学报 2022, 37 (9): 933-940.
随着电力电子器件封装密度提高, 开发导热性能优异的热界面材料受到了广泛关注。绝大多数传统导热填料的热导率较低, 因此合成新型高导热填料是提高热界面材料导热性能的重要途径。本研究通过简单的熔盐法合成了高导热的磷化硼(BP)颗粒, 与氮化硼(h-BN)混合并通过搅拌和浇注的方法填充到环氧树脂(EP)基体中制备得到树脂基复合材料(BP-BN/EP)。实验结果表明:采用三盐法(NaCl : KCl : LiCl)合成的BP产率最高达到74%, 相对于单盐法(41%)和双盐法(39%)分别提高了33%和35%。对于BP-BN/EP复合材料, 复合材料的微结构显示BP和BN颗粒均匀分布在环氧树脂基体。当混合填料体积分数为30%时, 该复合材料的热导率达到1.81 W•m-1•K-1, 是纯树脂热导率(0.21 W•m-1•K-1)的8.6倍, 这与BP颗粒作为桥梁连接相邻BN颗粒形成导热网络有关。除此以外, 相较于不含BP的复合材料(SBN-BN/EP), BP-BN/EP复合材料展现出更加优异的热导率、热稳定性和较好的热力学性能。因此, 熔盐法合成的BP在热管理领域具有较大的应用前景。
期刊介绍
《无机材料学报》创刊于 1986 年,主要报道包括结构陶瓷材料、信息功能材料、能源与环境材料、生物材料等方面的最新研究成果 , 设有综述、研究论文和研究快报(英文)版块,目前已被SCI-E、EI、Scopus、CA、CSTPCD、CSCD、CNKI、CJCR等数据库收录,入选 “高质量科技期刊分级目录——材料科学-综合类”T1区和“无机非金属领域高质量科技期刊分级目录” T1区期刊。
点“阅读原文”了解更多