01 误用:批退率作为管理指标
如我们对100批作抽样检验,结果有15批判退,则批退率(Lot Rejective Ratio)为15%,这容易让我们误解为不好的比率有15%,但实际不良率和不良批的意义是不同的。
其实如过程不良率(即产品质量水平)为0.4%,且我们用AQL 0.4%抽样,其批退率仍有5%是正常的,这是误判的风险概率,而我们的感觉却认为不良有5%(实际上不良率是0.4%)并为此感到不安。
除此之外,判退过程经常容易受人为因素的干扰而更会显得失真。更有甚者,用批退率来点绘趋势推移图作为管理的参考指标,这是无意义及无效的行为。
所以不能用批退率作为质量管理指标的主要原因有二个:一是统计的误判率5%,另一个是实际人为干扰的失真。
过程平均 process average
02 盲点:为抽样而抽样,不管产品质量水平为何
检验员执行抽样检验前,通常不去了解过程不良率是多少,就执行批抽样,这是不适当的。
因为抽样的前提必须是“过程不良率”和AQL值接近,才来判断此批质量水平是否合格可接受。
例如AQL0.25%,而过程不良率为2%左右,明显可知不用抽样即可退货,因为其质量水平与期望可接受的质量水平(AQL)相差太大。不要为抽样而抽样,这时应先假设为退货状态,再实施100%全检才对。
接收质量限 acceptance quality limit
这种盲点是因不了解抽样检验的本质,是“用来判定批质量水平”,当此批的质量水平接近允收水平,而我们还不是很确定时,才来执行抽样检验。
如不管过程不良率即抽检,不但无法正确判断好的批,而且将付出大量无效的检验工时人力。
03 错误观念:较严的AQL值可提升产品质量
企业质量管理中,经常可以听到使用较严的AQL值来提高产品质量,例如客户同意AQL1.0%(意即客户期望产品质量在不良率1%及以下可以接受),卖方为保证交更好的产品给客户,自动将AQL值修正为0.4%来长期执行抽样。欢迎关注质量与检测公众号这种观念是不对的。
把产品质量做好的前提是如何把“过程不良率”下降,而抽样是用来“判定批的好与坏”,而不是用来“提升产品质量”的。
较严的AQL值的效果,充其量只是增加退货概率,然后实施全检,对整体质量水平提升效果极为有限,因为增加退货概率不高(低于10%),再加上误判及人为干扰,效果微不足道。
用检验(全检)来提升产品质量已是下下之策,因质量不是靠检验出来的。更何况用抽样的方法来提升产品质量,浪费公司大量资源,质量还是做不好。
04 效果有限:最终成品采用多次全检
如最终产品质量水平确实不好,客户的订单也必须要交,长期对策远水救不了近火,先救急可出货前提下,只有安排下下之策去作全检,如再不满意则实施第二次、第三次的全检,这种不得已对策的有效性值得探讨。
根据实验及世界级公司内部的报告,如检验靠人的感官且训练合格的检验员,其第1次全检效果,即可挑出不良品的能力为70%,对同一批再作第二次全检效果则只有20%上下,如同批再第三次全检,则几乎再也挑不出问题来,如同批再作第四次全检,则不但挑不出问,反而产生新的问题(以外观问题为主)。
例如原质量水平不良率Px=10%,第1次全检则为Px1=3%,第2次全检Px2=2.4%,第3次全检Px3约2.4%上下,第3次在3%上下,因此最终成品采取多次全检的效果有限,最多2次为宜!
质量是没办法靠检验出来的,最终还是需要每个环节的源头做好和做对,产品质量是设计进去和制造做出来的。
05 等而下之:质量工作是抽检、检测和拒收
看到大部分公司(尤其传统产业)的质量部门只做“抽验、检测、退货‘的基本工作,且长期下来产品质量一点改善也没有。
曾有一位科技公司的质量经理,告诉我目前质量已大有进步,是因为检验员大量抓问题,长期作批退所致,这种似是而非的代价是使用大量的检验员,且质量人员比率已超过同行业二倍以上,这种质量经理真是可悲,连自已错在那里都不知道。
既然产品质量是设计进去和制造出来,自然质量和设计单位、制造单位有直接关系,那么质量单位要做什么?角色定位为何?如果身为质量部门经理以上管理者都不知道,真是太欠缺职业能力了。
检测工作只是了解真相和收集信息资料的基本工作,重要的是后续如何影响设计和制造部门,能自动自发把自己的工作做好,以节省资源和成本才是上策,因此质量部门真正要做的是"联络、沟通和整合"。
人的因素比专业因素还重要,要外圆内方,以"短期解决问题,长期创造价值"的自我定位,对内可降低营运成本,对外可凭借质量满意带来客户。
质量可塑造正面的企业文化而持续获益,这才是质量等而上的最高境界。
06 误解谬论:零缺点是"只要抓到1个问题即拒收"
零缺点的精神就是"追求完美",在有限的时间、知识、能力、设备下,追求最完美的演出,是一种精神和工作态度,追求完美不是不能容许瑕疵。
现在有些客户的工程师把零缺点解读为"不管样本数多少,只要抓到1个问题全批即拒收",这是半桶水的人对零缺点的误解。
要知道所有抽样理论都来自操作曲线 (OC Curve),样本数(n)及允收合格判定数(c)确定,则OC曲线才固定,若不管样本数(n大小)多少,即表示有无数条的OC 曲线,抽样即无一定标准可循,强作抽样再予以判定,就是”霸王硬上弓“。要批退很容易,只要样本数越大,退货概率就越高,这对卖方是不公平的。
如有这种质量协议,是不能签的。假如验收合约只说明零缺点精神,未说明允收水平(AQL)或出货质量水平(SPQL),就请买方进一步解读。
如有说明样本数(n)及判定数(C),或提出SPQL值,即表示验收有一定标准,是对的。如买方解读为不管样本数大小且C=0(不允许有1个问题),卖方可据理力争。欢迎关注质量与检测公众号如真的讲不通又没有其它途径解决,且公司一定要接单,则卖方可采取小批量分批出货的方式来应对。
07 其它抽样计划的误用
工作中有时候听到或看到误用抽样计划的情形。
例如A:
采用计量值的抽样计划,不去注意数据分布是否正态,就作使用,导致误判概率大增,其实现在统计软件很方便,数据分布容易图示,数据正态后再考虑计量值抽样。
例如B:
使用连续生产型抽样计划的前提,必须制程稳定且是连续性生产。自动化设备制程较易稳定且持续产出,但大量人工的装配工厂,制程较不易稳定,因人多、零件多的变化高,若遇缺料就不是连续性生产,因而不宜使用连续生产型的抽样计划。
最近居然听到有韩国大厂交面板给国内某组装厂,要求客户使用连续生产型抽样,理由是此韩国大厂都是这样被验收的,自己错了也要求别人一起犯错!
要知道交货给客户是以批量为单位,非连续性供货,而且面板产品是靠技术性人工组装的,制程充满不确定性,何来稳定,故韩国大厂误用了抽样计划。
08 没有不良率控制图,只有不良率趋势图
控制图的前提必须制程稳定,其变异是自然随机呈正态分布,故依据统计原理订定控制上限及下限,即中心线±3倍标准差,假如制程受到正面或负面的不正常干扰,其分布自然就不是正态,就不可使用控制图。
组装厂通常用不良率或良率作为质量绩效,组装厂因人多、零件多制程较不易稳定,加上管理者要求和介入去降低不良率(即为正面干扰,使分布不为正态),所以不良率是不能使用控制图的,要用趋势图(Trend Chart)取代。
除了去了解推移趋势外,还要加入管理的目标线,不断要求设法解决问题达成目标,此从管理角度才有意义,不要抱着死统计不消化!
因此,”没有不良率控制图,只有不良率趋势图“。
后语:大量朋友还没有养成阅读后点赞和分享、转发的习惯,希望大家在阅读后顺便点赞、分享和转发,以示鼓励。积善利他、纯公益性质传播管理知识,长期坚持真的很不容易,坚持需要信仰,专注更显执着,您的支持和鼓励是我坚持的动力!
内容来源于网络,如有侵权请联系删除)
希望大家阅读后顺手点“在看”,以示鼓励!