Chemical Engineering Journal
通过碳点诱导光生电子促进菌藻共生系统能量代谢和废水处理的新策略:加速电子传输的决定性作用
文章信息
第一作者:张弛 博士研究生,周明尾 硕士研究生
通讯作者:侯宁 教授,赵昕悦 教授
通讯单位:东北农业大学 资源与环境学院
成果简介
近日,东北农业大学资源与环境学院侯宁团队在环境领域著名学术期刊Chemical Engineering Journal上发表了题为“Novel strategies for enhancing energy metabolism and wastewater treatment in algae-bacteria symbiotic system through carbon dots-induced photogenerated electrons: The definitive role of accelerated electron transport”的研究论文。本研究首先发现并报道了通过碳点(CDs)光生电子的特性与菌藻共生体系(ABSS)耦合的方法,克服了养殖废水中ABSS对光能竞争导致电子供体不足,进而降低ABSS脱氮效率的瓶颈问题。通过CDs的加入促进了醌池(PQ-pool)阀门的打开,加速了电子转移速率,使光生电子能够选择性地靶向激活位点,从而调动光合作用和呼吸系统活性。此外,本研究采用人工模拟养殖废水的方式,发现ABSS/CDs的加入有效地改善了光生物反应器内微生物群落结构的稳定性,促进真菌、硝化细菌和反硝化细菌之间的高效耦合,提高了脱氮性能。本研究扩展了人们对ABSS生理特性的理解,并为CDs光生电子强化废水处理提供了有价值的见解。
图文摘要
图文导读
菌藻共生系统的构建
Fig 1. Construction of symbiotic system between bacteria and algae (a and b) transcriptomic analysis reveal systematic changes in the regulation of KEGG pathway enrichment at algal and bacterial levels in ABSS state and (c) IAA and Trp metabolism and nitrogen removal in the construction of ABSS.
从图1可知,转录组分析发现多种代谢途径在ABSS中显著富集且上调。在ABSS中,吲哚乙酸(IAA)和色氨酸(Trp)作为关键信号分子,对物质代谢和脱氮效率至关重要。其中,IAA进入藻类细胞后转化为Trp,细菌则利用藻类分泌的Trp促进IAA生物合成。在脱氮方面,藻类主要通过还原NO3-和NO2-来有效脱氮,而NH4+则通过谷氨酰胺合酶-谷氨酸合酶途径直接转化为氨基酸。细菌的引入增强了藻类的氮去除能力,提高了ABSS的脱氮效率。然而,PQ-pool电子传递等关键途径在ABSS中转录调控水平下调,PQ-pool作为电子传递的关键节点,其上游电子不足导致整体能量代谢受到抑制。同时,与光合作用和能量代谢相关的代谢通路转录调控水平下调,进一步表明ABSS间光能竞争导致额外能量消耗。
CDs通过调节光合作用促进代谢物的再生
Fig 2. Effects of CDs on photosynthetic efficiency and central carbon metabolism including (a) electron transport of photosynthetic pathway, (b) expression of the photosynthetic genes, (c) central carbon metabolism, (d) maximum potential quantum efficiency (Fv/Fm), (e) actual quantum efficiency of PSII photochemistry (YII), (f) relative electron transport rate (rETR) and (g) non-photochemical quenching (NPQ). The results are presented as the percentage compared with each control as averages with standard deviations (n = 3). A, B, C and D stands for A, ABSS, A + 5 mg/L CDs and ABSS + 5 mg/L CDs groups. The inset shows the log2 colorcoding scale. The numbers above the error bars represents significant difference (p < 0.05, 0.01, or 0.001, t-test, respectively).
如图2所示,CDs的引入有效利用太阳能产生电子,为ABSS系统提供充足的电子供应,增强PQ-pool内的电子传递,激活ABSS的光合系统活性,提高光合参数(Fv/Fm,Y(II)和rETR),从而增强ABSS的能量积累。结果显示,CDs使ABSS细胞内脂质含量增加56.25%;此外,CDs还促进了色素生物合成,提高类胡萝卜素和叶绿素积累,并增强了信号分子(IAA和Trp)的交流。在污染物去除方面,CDs的加入提高了COD、TN和NH4+-N的去除率(分别为100%,99.23%和98.62%)。此外,PQ-pool功能相关基因的转录水平显著增加,进一步说明CDs作为电子供体促进了有效的电子向ABSS转移,并缓解ABSS光捕获过程中电子转移的抑制,同时,提高碳代谢相关基因的表达,增强脂肪酸等物质代谢活性。
CDs提高ABSS呼吸作用促进脱氮效率
Fig 3. CDs regulates nitrogen removal rate and energy supply by changing the electron transport capacity and electron consumption of the respiratory chain. (a) electron transport in the respiratory chain; (b) TCA, EMP and HMP cycle; (c) changes in the expression levels of differentially expressed genes encoding NADH dehydrogenase, succinic acid/fumarate reductase, Cyt bc1 complex, Cyt c complex, ATP synthase and essential enzymes at each step of the denitrification process; (d) the changes of ATP contents, (e) the changes of NADH contents and (f) ETSA levels under different treatment conditions. The results are presented as the percentage compared with each control as averages with standard deviations (n = 3). The inset shows the log2 colorcoding scale. The symbol (*, ** or ***) above the error bars represents significant difference (P < 0.05, 0.01, or 0.001, t-test, respectively).
CDs的引入在呼吸链中引发了“多米诺骨牌效应”,促进了电子从NADH脱氢酶转移到Complex III等相关脱氮酶,促进相关编码基因表达,导致PQ-pool内电子传递增强。此外,EMP途径、HMP途径及TCA循环加速,相关基因表达上调,在COD、TN和NH4+-N去除过程中发挥了关键作用。与CK组相比,ABSS + 5 mg/L CDs组中ATP和NADH含量分别提高了52.6 ± 10.3%和27.3 ± 8.4%;同时,Complex I、III和ETSA活性分别提高了19.5 ± 8.7%、17.5 ± 8.7%和39.5 ± 8.7%。结果表明,Complex的活性直接影响NADH含量和电子产生,最终促进整体电子转移。综上,CDs的加入起到“助推器”的作用,促进了高效的电子传递和消耗,这对于维持微生物脱氮功能的稳定性至关重要。
ABSS/CDs调节模拟猪废水系统中污染物去除性能、微生物群落演替和核心基因改变
Fig 4. Topological networks with highly connected modules (≥ 3 nodes) and Z-P plots of the different treatment groups. The color of the nodes represents the main phyla. The node size is proportional to its relative abundance in the microbial community. The red line represents a positive correlation and the blue line represents a negative correlation. The node in the middle of the module is the module hub, and the node in the red circle is the connector.
为了更深入地了解废水中微生物之间的相互关系,Network图显示,与A和ABSS(40和59个节点)相比,A + 5mg/L CDs和ABSS + 5mg/L CDs分别拥有超过91和200个网络节点,这表明CDs的加入增强了关键微生物的竞争优势。此外,CDs组的网络显示出更大的接近性和复杂性(图4)。通过模块内连通性(Zi)和模块间连通性(Pi)来识别形成微生物生态网络的关键微生物。与ABSS组相比,ABSS + 5 mg/L CDs组的网络显示出更多的模块集线器和连接器。其中,Chlorophyta和Proteobacteria贡献了5个模块和6个关键菌。同时,提高Chlorophyta和Proteobacteria在生态位中的优势地位。总之,ABSS/CDs能够改变废水生态位的结构复杂性和多样性,并最终决定这些复杂微生物生态系统的功能潜力。Mantel试验评估了4种核心微生物(Proteobacteria, Bacteroidota, Chlorophyta和Basidiomycota)作为ABSS/CDs调控下废水处理过程中N代谢途径模块和PQ-pool功能的主要功能微生物,且与ABSS + 5 mg/L CDs组中N循环和PQ-pool相关基因呈现出显著正相关。总之,ABSS/CDs的加入有效地规避了废水处理中电子传递的限制,从而加快了核心微生物之间的电子传递,从而提高了能量积累和氮代谢率。
Fig 5. ABSS/CDs regulates the core genes changes in PBR. (a) Linear regression models between core nitrogen cycle genes and α diversity in four treatment groups. (b) Procrustes analysis of the microbial abundance profile and core nitrogen cycle genes in ABSS + 5 mg/L CDs group. (c) Correlation matrix of the related genes of nitrogen cycle and PQ-pool and core microbial in ABSS + 5 mg/L CDs group. Line color represents the level of statistical significance, and line thickness represents the Mantel’s r statistic value for the associated distance correlations.
综合机制
Fig 6. Integrated mechanism of CDs-induced improvement for ABSS metabolism, electron transport and nitrogen removal efficiency.
综上所述,首先,CDs通过利用光生电子突破了ABSS中的限制步骤“PQ-pool”,从而促进了光合系统内的电子传递,增强了TCA和卡尔文循环,加速了物质的积累和交换(21.52%~56.25%)。其次,CDs刺激了呼吸链中的电子转移,促进了EMP途径、HMP途径和N代谢途径,提高了COD和N吸收(89.36%~96.42%)。最后,CDs通过降低ROS水平和抑制抗氧化酶活性来减轻氧化应激。通过代谢增强共同促进了ABSS的增殖、生长和氮去除效率。
投稿、合作、获取文献请留言