原文链接:https://www.nature.com/articles/s41565-024-01696-0
全文速览
背景介绍
贵金属纳米晶体合成技术的发展推进了精细控制所需的形貌、化学成分和界面;因此,贵金属纳米晶体合成作为许多应用领域的创新平台受到了越来越多的关注。与单金属材料相比,基于贵金属的异质结构(NMHSs)--即两种或两种以上材料的组合--具有整合单金属材料的优势和克服单个成分的弱点,从而在特定应用中实现比单种材料更高的性能,甚至产生额外的功能。因此,具有定义明确成分、结构和界面的NMHS 受控合成非常重要。
一般来说,由于异质界面两端的晶体不同,大多数NMHS不可避免地存在晶格失配问题。此外,具有目标结构取向、组分分布和界面的NMHS的可控合成(尤其是直接一锅合成)尚未见报道,其中主要障碍是在成核和生长阶段对前驱体的热力学和动力学平衡调节。
因此,要想通过直接一锅法成功构建具有定义明确的NMHS,需要考虑三个关键参数。首先,必须精准控制金属前驱体的还原率,以形成预制的基底材料。此外,基底材料必须足够稳定,以承受后续生长过程中化学环境的变化以及基底材料表面应该是各向异性的,允许与次级材料之间存在最佳的晶格匹配和最小的应变的界面实现优先生长。最后次级材料必须避免不理想的异质成核现象。
研究目标
有鉴于此,我们率先报告了动力学控制区域选择性构筑多种金属异质结构,该合成机制突出通过简单一步法实现精准控制金属前驱体的还原速率以及解析异质界面最佳晶格匹配关系。两种定义明确的Pt/Pd-Sb异质结构被合成,即Pt纳米颗粒在Pd20Sb7纳米板的侧面区域选择性外延生长(r-Pt/Pd20Sb7 HPs)和Pt纳米颗粒在Pd20Sb7 纳米板表面的随机分布(u-Pt/Pd20Sb7 HPs)。而且通过相调控和形貌调控验证这一合成机理(图1)。同时,r-Pt/Pd20Sb7 HPs催化剂与商业Pd/C、u-Pt/Pd20Sb7 HPs相比在乙醇燃料电池乙醇反应中展现出优异的催化活性,稳定性和选择性。所设计的催化剂为其在高性能催化应用中开辟了新途径。
Fig. 1 Demonstrations of phase and morphology regulation. Schematic illustration of the regioselective growth of Pt on four representative Pd–Sb intermetallics with well-defined heterostructures. Vdep, deposition rate of metal; Vdiff, diffusion rate of metal.
图文精读
Fig. 2 | Morphology characterizations and structure analyses of r-Pt/Pd2~0Sb7 HPs and u-Pt/Pd20Sb7 HPs. a,b, Transmission electron microscopy(a) and HAADF-STEM (b) images of r-Pt/Pd20Sb7 HPs. c, Energy-dispersiveX-ray spectroscopy line scanning of single r-Pt/Pd20Sb7 HP. d,e, Transmissionelectron microscopy (d) and HAADF-STEM (e) images of u-Pt/Pd20Sb7 HPs. f, Energy-dispersive X-ray spectroscopy line scanning of single u-Pt/Pd20Sb7 HP.The horizontal pink and purple arrows in b and d show the EDS line scanningdirections of r-Pt/Pd20Sb7 HPs (b) and u-Pt/Pd20Sb7 HPs (d). In c Pd–L, Sb–Land Pt–M correspond to Pd L line, Sb L line and Pt M line in the EDS spectra.g,h, Elemental mapping images of single r-Pt/Pd20Sb7 HP viewed from the front (g)and side (h). i,j Elemental mapping images of single u-Pt/Pd20Sb7 HP viewed from the front (i) and side (j). k,l, High-resolution HAADF-STEM (k) image and corresponding intensity profile of r-Pt/Pd20Sb7 HPs (l). In k, the insets in the cyanand yellow-bordered boxes are the corresponding FFT images of the crown layer and the hexagonal phase crystallization of Pd20Sb7 in the interior, respectively. m, Atomic resolution elemental mapping of r-Pt/Pd20Sb7 HPs, in which the Pd and Sb formed an ordered interior hexagonal core, whereas the Pt atoms formed an outer crown with an ordered atomic arrangement. n–p, High-resolution HAADF-STEM image (n), the corresponding FFT image (o) and atomic resolution elemental mapping of u-Pt/Pd20Sb7 HPs (p). In o, the unit of FFT patterns is 2 1/nm. q,r, Schematic illustration of r-Pt/Pd20Sb7 HPs (q) and u-Pt/Pd20Sb7 HPs (r). Red, Pd; purple, Sb; cyan, Pt.
通过简单一锅法调控使用不同的金属前驱体从而调控金属前驱体的还原速率以实现控制合成两种不同的Pt纳米颗粒在菱方相Pd20Sb7纳米板的生长方式(图S1)。如图2所示。通过TEM图像,AC- HAADF-STEM 图像以及元素面扫图等确认两种定义明确的异质结的形成。其中一种是实现Pt NPs在Pd20Sb7 HPs 侧面区域选择性外延生长(r-Pt/Pd20Sb7 HPs)的核冠异质结,其外延关系为[110](111)/Pt // [001](440)/Pd20Sb7;另一种是形成Pt NPs在Pd20Sb7 HPs表面的随机分布(u-Pt/Pd20Sb7 HPs)的核壳异质结。
Fig. 3 Electronic structures of r-Pt/Pd20Sb7 HPs and u-Pt/Pd20Sb7 HPs. a–c, Pt-4f XPS spectra (a), Sb-3p XPS spectra (b) and Pd-3d XPS spectra (c) of Pt, Pd20Sb7 HPs, r-Pt/Pd20Sb7 HPs and u-Pt/Pd20Sb7 HPs. d–f, Normalized XANES spectra of catalysts at the Pt L3-edge (d), Sb K-edge (e) and Pd K-edge (f). g–i, The Fouriertransformed R-space of the EXAFS spectra of catalysts at the Pt L3-edge (g), Sb K-edge (h) and Pd K-edge (i). j, Wavelet transform for the k3-weighted Pt L3-edge.
通过XPS、EXAFS等表征技术,他们对两种异质结中Pd,Sb,Pt原子的结构和配位环境进行了深入研究。XPS分析表明在两种异质结Pt原子与Sb原子存在电子相互作用。XANES和EXAFS对电子结构和局部配位状态进一步揭示了Pt原子与Pd20Sb7之间相互作用通过Pt原子优先与Sb原子直接键合。其中r-Pt/Pd20Sb7 HPs中Pt存在更大的拉伸应变。
Fig. 4 Mechanistic study of the synthesis of the r-Pt/Pd20Sb7 and u-Pt/Pd20Sb7 HPs.a,b, X-ray diffraction patterns of intermediates obtained from r-Pt/Pd20Sb7 HPs (a) and u-Pt/Pd20Sb7 HPs (b) at 15, 20, 40, 60, 80, 120 and 150 min. c, Plots depicting the relative concentration (r.c.) of Mx+ remaining in the solution relative to the initial concentration versus reaction time, and the linear relationship between –ln(r.c.) and reaction time; the fitting is based on pseudo-first-order kinetics during synthesis of r-Pt/Pd20Sb7 HPs. d, Plots depicting the r.c. of Mx+ remaining in the solution relative to the initial concentration versus reaction time, and showing the linear relationship between –ln(r.c.) and reaction time; the fitting is based on pseudo-first-order kineticsduring the synthesis of u-Pt/Pd20Sb7 HPs. Specifically, SbCl3 reacted first and was almost depleted after 15 min. Pd(acac)2 closely followed and was almost depleted after 40 min in the two heterostructure solutions. e, Theoretical adsorption energies of Pt on the (400), (040), (004) and (44̄0) surfaces of Pd20Sb7. For each surface, we consider eight different adsorption sites and summarize their adsorption energies in the box plots, with the average value and median value highlighted. f, Comparison of theoretical adsorption energies between PtCl2 and Pt(acac)2 on the (400), (040), (004) and (44̄0) surfaces of Pd20Sb7. g, Schematic illustration of kinetically controlled synthesis mechanism for the regioselective growth.
图4通过定量时间追踪实验和理论计算解析了两种异质结构不同的形成路径。第一个过程是自催化还原-成核过程,迅速形成Pd20Sb7核。在随后的过程中,Pd20Sb7 核转变为更大的 Pd20Sb7 HPs,由于扩散受限的Ostwald ripening机制,后还原成核Pt NPs不会单独成核,而是溶解并再次沉积到 Pd20Sb7 HPs表面。值得注意的是,由于晶格匹配良好,新成核的Pt NPs最初倾向于沉积在 Pd20Sb7 HPs 的侧表面。第三个过程主要由不同的成核率和表面扩散率控制,这是确保形成r-Pt/Pd20Sb7 HPs和u-Pt/Pd20Sb7 HPs的关键因素。由于Pt(acac)2的中Pt前驱体还原率极低,打破Pt前体成核和扩散的平衡,导致表面扩散过度,Pt/Pd20Sb7 HP异质结构的生长模式从核冠结构转变为核壳结构。
Extended Data Fig. 1 | Phase regulation used to validate the regioselective growth mechanism. (a) XRD patterns of r-Pt/Pd8Sb3 HPs and u-Pt/Pd8Sb3 HPs. (b) Schematic illustration of r-Pt/Pd8Sb3 HPs and u-Pt/Pd8Sb3 HPs. (c) TEM image, (d) HRTEM image from the labelled area of Extended Data Fig. 1c, and (e, f) corresponding FFT images of r-Pt/Pd8Sb3 HPs. (g) EDS line scanning, and (h) elemental mapping image of single r-Pt/Pd8Sb3 HP. (i) TEM image, and (j) HRTEM image of u-Pt/Pd8Sb3 HPs from the labelled area of Extended Data Fig. 1i, inset of the corresponding FFT image. (k) EDS line scanning, and (l) elemental mapping image of single u-Pt/Pd8Sb3 HP.
Fig. 5 Morphology regulation used to validate the regioselective growth mechanism. a, Schematic illustration of r-Pt/Pd20Sb7 RHs and u-Pt/Pd20Sb7 RHs. b, Transmission electron microscopy image of r-Pt/Pd20Sb7 RHs. c,d, Energydispersive X-ray spectroscopy line scanning (c) and elemental mapping image (d) of a single r-Pt/Pd20Sb7 RH. e, Transmission electron microscopy image of u-Pt/Pd20Sb7 RHs. f,g, Energy-dispersive X-ray spectroscopy line scanning (f) and elemental mapping image of single u-Pt/Pd20Sb7 RH (g). h, Schematic
利用晶相和形貌调控来验证区域选择性生长机制。当改用Pd8Sb3 HPs 作为基底材料时(扩展图. 1),成功合成了 r-Pt/Pd8Sb3 HPs 和 u-Pt/Pd8Sb3 HPs. 同时这一合成策略还扩展到Pd20Sb7 RHs和Pd20Sb7 NPs作为基底材料(图5)。
Fig. 6 Ethanol oxidation reaction applications of Pt/Pd20Sb7 HPs. a,b, Cyclic voltammetry in HClO4 electrolyte (a) and EOR activities in 0.5 M NaOH + 0.5 M ethanol electrolyte (b) of three different catalysts. c,d, Comparison of normalized by mass and specific activities of Pt (c) and CO stripping measurements of different catalysts (d). e,f, Chronoamperometry measurements (e) and CVs (f) before and after 2,000 cycles in 0.5 M NaOH + 0.5 M ethanol electrolyte. g,h, In situ FTIR spectra varied from −0.8 to 0.2 V versus RHE in 0.5 M NaOH + 0.5 M ethanol of u-Pt/Pd20Sb7 HPs/C (g) and r-Pt/Pd20Sb HPs/C (h). The upward peaks at 1,085 and 1,045 cm−1 are attributed to C–O stretching and C–O vibrations, implying the consumption of CH3CH2OH. The downward peaks at 1,547, 1,414 and 1,345 cm−1 are attributed to asymmetric stretching vibrations of O−C–O, the symmetric stretching vibrations of O−C–O and the bending vibrations of –CH3 in CH3COO−, respectively. i, Faradaic efficiencies of ethanol to AcO– and CO2 on three catalysts at 0.6–0.8 V versus RHE.
图6评估了两种Pt/Pd20Sb7 HPs异质结催化剂的乙醇电催化活性。r-Pt/Pd20Sb7 HPs/C在乙醇电催化反应中表现出显著的催化活性,稳定性以及选择性,峰值质量活性达到了59.28 A mg-1Pt,是商业Pt/C的57倍。而且与商业Pt/C(56.0%、18.2%)相比,该催化剂的稳定性(2k次循环后下降了16.3%)和C1选择性(72.4%)均有所提高。
结论
综上所述,通过调节Pd-Sb金属间化合物的相结构和形貌以及Pt前驱体的还原速率,提出了一种有效的动力学控制合成框架,以精准构筑具有区域选择性Pt/Pd-Sb异质结构。Pt和Pd-Sb金属间相之间的最佳晶格匹配关系可用于Pt NPs的优先和选择性生长。此外,使用不同的Pt前驱体所产生的还原动力学变化可能进一步破坏成核和生长的平衡,以调节Pd-Sb金属间化合物表面的Pt NPs的分布。值得注意的是,所有这些进展为制备定义明确的异质结构和开发具有非凡和多样化功能的材料提供了机会。
心得与展望
本研究率先实现了区域选择性构筑多种金属异质结,该合成机制突出通过简单一步法实现精准控制金属前驱体的还原速率以及解析异质界面最佳晶格匹配关系。同时,该材料在乙醇燃料电池乙醇反应中展现出优异的催化活性,稳定性和选择性。其创新点主要体现在以下几点:
(1) 首次采用简单一步法在Pt/Pd-Sb异质结构中成功合成了定义明确的 NMHS。即在Pt NPs在Pd20Sb7 HPs 侧面区域选择性外延生长(r-Pt/Pd20Sb7 HPs)的核冠异质结和Pt NPs在Pd20Sb7 HPs 表面的随机分布(u-Pt/Pd20Sb7 HPs)的核壳异质结。此外,r-Pt/Pd20Sb7 HPs 中符合[110](111)/Pt // [001](440)/Pd20Sb7的外延关系,这导致了r-Pt/Pd20Sb7 HPs中Pt和Sb之间的强相互作用。
(2) 对Pd-Sb基体材料进行晶相和形貌调节,以验证动力学控制合成机制。通过调节金属前驱体(Pd、Sb、Pt)的还原速率,可以优先合成 Pd20Sb7 HPs。进一步精确确定 Pt/Pd20Sb7 异质界面的晶格匹配关系并控制铂前驱体的成核速率,可在 Pd20Sb7 HPs 上实现Pt NPs的区域选择性结构。重要的是,实现了从 Pd20Sb7 HPs 到 Pd8Sb3 HPs 的相调控以及从 Pd20Sb7 HPs 到 Pd20Sb7 RHs和 Pd20Sb7 NPs的形貌调节,以验证了控制合成机制。
(3) 定义明确的 r-Pt/Pd20Sb7 HPs/C大大提高了乙醇电氧化的活性。其峰值质量活性达到了59.28 A mg-1Pt,是商业Pt/C的57倍;同时也表现出显著的稳定性和C1选择性。
作者简介
黄小青:厦门大学特聘教授、博士生导师、国家杰出青年基金获得者(2020)。2011年在厦门大学化学化工学院获得博士学位、2011-2014年在University of California, Los Angeles从事博士后研究。现主持多项国家联合基金、国家重点研发计划、国家自然科学基金项目。担任Science Bulletin、Rare Metal、Science China Materials等期刊的客座编辑或编委。围绕能源催化材料,已在Science, Nat. Nanotechnol., Nat. Mater., Chem. Rev., Chem. Soc. Reviews, J. Am. Chem. Soc., Sci. Adv., Angew. Chem. Int. Ed., Energy Environ. Sci., Adv. Mater., Adv. Energy. Mater.等国际高水平期刊发表论文260余篇。H因子76,他引21000余次。曾入选江苏省“双创团队计划”领军人才、江苏省“双创人才计划”、荣获2018年度“国家自然科学奖”、荣获2019年度江苏省科学技术奖、2017年度中国化学会青年化学奖、霍英东教育基金会第十六届高等院校青年教师奖、2017年度中国电化学青年奖、2017年度中国新锐科技人物和2018年度中国化学会纳米新锐奖
邵琪,2016年香港城市大学博士毕业后入职苏州大学,任副研究员、硕士生导师、优秀青年学者。入选江苏省科协青年科技人才托举工程。曾获苏州市优秀科技论文一等奖,苏州大学第十九届“挑战杯”大学生课外学术科研作品竞赛一等奖等。近年来致力于介稳相材料为基础的先进材料合成、应用、机理研究的前沿性探索。自苏大工作以来以通讯作者和第一(共一)作者在Nat. Commun.、Sci. Adv.、Joule、Adv. Mater.、Angew. Chem.等学术刊物发表论文60余篇,他引九千余次,H指数56。主持国家自然科学青年基金、江苏省面上项目等项目
黄萱,厦门大学化学化工学院在读硕士生,主要研究方向为贵金属基-类金属及其衍生物的结构控制及其催化性能研究,以一作在J. Am. Chem. Soc.期刊上发表学术论文1篇。
欢迎加入纳米原子催化微信群
为满足纳米催化各界同仁的要求,陆续开通了纳米原子催化专家学者群在内交流群,目前汇聚了国内外高校科研院所及企业研发中心顶尖的专家学者、技术人员。
申请入群,请先加审核微信号18182086034(王老师)(或长按下方二维码),并请一定注明:姓名+单位+研究方向,否则不予受理,资格经过审核后入相关专业群。
QQ群聊