原文信息:
Power to Heat: Opportunity of Flexibility Services Provided by Building Energy Systems
原文链接:
https://www.sciencedirect.com/science/article/pii/S2666792423000288
Abstract
Buildings play a crucial role in global electricity consumption, but their function is evolving. Rather than merely consuming energy, buildings have the potential to become energy producers through participating in flexibility services, which involve demand response and distributed energy supplies. However, the new technological and societal challenges that arise from temporal and spatial changes on both supply and demand sides make building services increasingly complex. This paper presents an opportunity for flexibility services offered by building energy systems via power-to-heat technology and discusses four key aspects: quantitative indicators based on thermal inertia, model predictive control for building flexibility, flexible system optimization for smart buildings, and applications of flexible services. Thermal inertia is a crucial factor that transcends technical constraints and serves as a bridge between the demand and supply sides. Demand-side response and data-driven cogeneration under model predictive control are essential for managing building flexibility. In addition, flexible system optimization is achieved through the combination of demand-side trading and disturbed system optimization. Applications of flexible services represent a combination of demand-side trading and disturbed system optimization in the fields of engineering and sociology. Finally, the paper explores the challenges, as well as the potential and models of building flexibility services technologies, including features that can facilitate automated operational decision-making on both the demand and supply sides.
Keywords
Building energy flexibility
Data-driven
Power to heat
Model predictive control
Smart grid
Figure 1. Structure diagram of flexibility services provided by building energy systems.
Figure 4. Flexibility sources in commercial and residential buildings.
Figure 9. Carbon emission model of the residential building.
Figure 10. Structure of smart contracting with P2P trading and fundamental steps for execution.
Figure 13. Perspectives of building flexibility services.
关于Applied Energy
本期小编:郭加澄;审核人:余佩佩
《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子11.446,CiteScore 20.4,高被引论文ESI全球工程期刊排名第4,谷歌学术全球学术期刊第50,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》现已正式上线。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!
公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org
点击“阅读原文”
喜欢我们的内容?
点个“赞”或者“再看”支持下吧!