原文信息:
A distributed robust control strategy for electric vehicles to enhance resilience in urban energy systems
原文链接:
https://www.sciencedirect.com/science/article/pii/S2666792422000270
Abstract
Resilient operation of multi-energy microgrid is a critical concept for decarbonization in modern power system. Its goal is to mitigate the low probability and high damaging impacts of electricity interruptions. Electrical vehicles, as a key flexibility provider, can react to unserved demand and autonomously schedule their operation in order to provide resilience. This paper presents a distributed control strategy for a population of electrical vehicles to enhance resilience of an urban energy system experiencing extreme contingency. Specifically, an iterative algorithm is developed to coordinate the charging/discharging schedules of heterogeneous electrical vehicles aiming at reducing the essential load shedding while considering the local constraints and multi-energy microgrid interconnection capacities. Additionally, the gap between electrical vehicle energy and the required energy level at the departure time is also minimised. The effectiveness of the introduced distributed coordinated approach on energy arbitrage and congestion management is tested and demonstrated by a series of case studies.
Keywords
Multi-energy micro-grid system
Electric vehicle
Power system resilience
Distributed control strategy
Graphics
Fig. 1. The architecture of a MEMG cluster.
Fig. 2. Feasible SOC polygon of EV j and an example operational profile.
Fig. 7. Total electricity demand (solid lines) and maximum RES power (dashed lines) of the three MEMGs.
Fig. 9. Energy sources at three MEMGs. Upper row: without MEMG interconnections; Lower row: with MEMG interconnections.
Fig. 10. Essential load curtailment at different EV number and interconnection line capacity scenarios.
关于Applied Energy
本期小编:彭维珂; 审核人:陈乾乾
《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子11.446,CiteScore 20.4,高被引论文ESI全球工程期刊排名第4,谷歌学术全球学术期刊第50,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》现已正式上线。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!
公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org
点击“阅读原文”
喜欢我们的内容?
点个“赞”或者“再看”支持下吧!