【Advances in Applied Energy】深海漂浮式风力发电:环境影响的生命周期评估

学术   科学   2024-09-23 18:31   美国  

原文信息:

Floating Wind Power in Deep-Sea Area: Life Cycle Assessment of Environmental Impacts

原文链接:

https://www.sciencedirect.com/science/article/pii/S266679242300001X

Highlights

• Environmental impact of a floating wind farm with 100 turbines of 6.7 MW was assessed by LCA method.

• Large-scale floating wind power deployment would not produce higher carbon footprint.

• Steel consumption was the sensitivity factor that affected the LCA assessing results.

• Steel production by electric arc furnace reduced upstream greenhouse gas emissions significantly.

• This study could provide reference value for global large-scale floating wind farm deployment.

摘要

       海上漂浮式风力发电作为海上风电行业的一项新兴技术,因其与其他可再生能源合作实现能源系统脱碳的潜力而受到越来越多的关注。应考虑深海漂浮式风电场的环境影响,并设计提高其低碳效应的方法。已经有一些研究评估了海上浮式风电场的环境影响,但这些研究的规模相对较小。本研究基于中国生命周期评价基础数据库(CLCD),使用生命周期评估 (LCA) 方法对有 100 台 6.7 MW 风力涡轮机的浮式风电场所带来的环境影响进行了评估。结果表明,该风电场的碳足迹为25.76 g CO2-eq/kWh,在全球变暖潜能值上相对较低。此外,漂浮式海上风电场对富营养化潜力的贡献最大。钢材消耗量的 ±20% 变化会导致每个环境类别的指标分数呈现 ±3% 至 ±15% 的变化,表明风电场的环境绩效主要受该参数影响。此外,情景分析表明,采用电弧炉炼钢路线,到2030年可减少海上浮式风电场上游过程温室气体累计排放1.75 Mt CO2-eq。钢铁行业的减排将进一步减少漂浮式海上风电场的碳足迹。未来需要收集更多的基线数据,以提高 LCA 的可靠性。漂浮式海上风电场对海洋生态和大气物理特性的影响仍有待深入研究。

更多关于"Floating Wind Power "的研究请见:

https://www.sciencedirect.com/search?pub=Advances%20in%20Applied%20Energy&cid=777797&qs=floating%20wind%20power

Abstract

Floating offshore wind power, an emerging technology in the offshore wind industry, has attracted increasing attention for its potential to cooperate with other renewable energies to decarbonize energy systems. The environmental effects of the floating offshore wind farm in deep-sea areas should be considered, and methods to enhance the low-carbon effect should be devised. There have been a few studies assessing the environmental effects of the floating offshore wind farm, but the scales of these studies were relatively small. This study evaluated the environmental impacts of a floating wind farm with 100 wind turbines of 6.7 MW using life cycle assessment (LCA) method, based on the Chinese core life cycle database. Results showed that the carbon footprint of the wind farm was 25.76 g CO2-eq/kWh, which was relatively low in terms of global warming potential. Additionally, the floating offshore wind farm contributed most to eutrophication potential. A ± 20% variation in steel resulted in a ±3% to ±15% variation in the indicator score of each environmental category, indicating that the environmental performance of the wind farm was mainly influenced by this parameter. Moreover, scenario analysis showed that electric arc furnace routes can reduce the cumulative greenhouse gas emissions from upstream process of the floating offshore wind farm by 1.75 Mt CO2-eq by 2030. Emission reduction of the steel industry will further reduce the carbon footprint of the floating offshore wind farm. In the future, more baseline data need to be collected to improve the reliability of LCA. The effects of the floating offshore wind farm on marine ecology and atmospheric physical characteristics remain to be investigated in depth.

Keywords

Deep-sea area

Offshore wind

Floating wind power

Life cycle assessment

Environmental effects

Greenhouse gas emissions

Graphics


Graphic Abstract

Fig. 3. System boundary of the floating offshore wind power. (I) Components manufacturing and transport, (II) wind farm construction, (III) O&M, and (IV) decommissioning activity.

Fig. 4. Material flows of the floating offshore wind farm (OWF) during its lifetime.

Fig. 5. Life cycle environmental impacts for the baseline case. | (a) Relative contributions of the floating OWF to each impact category in each life cycle stage. (b) Normalized analysis of the LCA results.

Fig. 6. Sensitivity analysis of the LCA results. | (a) Given the uncertainties of the foreground data, the effects of ±20% variation in input parameters on the LCA results. (b) Statistical distribution of the LCA results in each impact category considering the uncertainties in background data (representing percentiles 2.5, 25, 50, 75, and 97.5, i.e., 95% confidence interval).

Fig. 7. GHG emissions intensity for different types of renewable energy generation.

Fig. 8.GHG emissions from global floating wind power deployment for 2020–2030. | (a) Prediction of the cumulative GHG emissions of offshore wind power technology with various steel production routes. The new installed capacity was provided by GWEC’s Global Offshore Wind Report 2021. (b) Average GHG emission intensity of steel production in different countries, where large-scale floating OWFs will be deployed.

作者简介


通讯作者:

冯景春,广东工业大学百人计划教授,博士生导师。广东工业大学与南方海洋科学与工程广东省实验室(广州)共建“滨海与深海生态环境研究中心”主任。主要从事海洋天然气水合物与海洋甲烷释放的环境生态效应相关研究。主持国家重大科研仪器研制项目,国家重点研发青年科学家项目、国家自然科学基金优秀青年科学基金项目等十余项,入选中国科学院青年创新促进会会员,获得中国科学院院长特别奖和中国科学院优秀博士学位论文等奖励。发表相关领域SCI论文近100篇,获授权中国发明专利近30项,PCT专利10项,申请美国专利6项。https://seer.gdut.edu.cn/info/1029/1062.htm

关于Applied Energy

本期小编:张星辰; 审核人:叶佳南    

《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子11.446,CiteScore 20.4,高被引论文ESI全球工程期刊排名第4,谷歌学术全球学术期刊第50,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》现已正式上线。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!

公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org

点击“阅读原文”

喜欢我们的内容?

点个“赞”或者“再看”支持下吧!


AEii国际应用能源
发布应用能源领域资讯,介绍国际应用能源创新研究院工作,推广应用能源优秀项目,增进应用能源领域合作
 最新文章