【Advances in Applied Energy】含分布式能源的建筑电气化碳减排的运行控制与系统设计的集成优化

学术   科学   2024-09-11 18:30   四川  

原文信息:

Integrated Optimization in Operations Control and Systems Design for Carbon Emission Reduction in Building Electrification with Distributed Energy Resources

原文链接:

https://www.sciencedirect.com/science/article/pii/S2666792423000239

Highlights

· An optimization framework for integrated system design and control optimization

· Deep learning is used to address computationally intractable optimization problem

· The framework optimizes distributed energy resources and electric building systems

· The framework reduces building carbon emissions by 80% and total costs by 2.7%

· The framework reduces building net electrical loads from 44.1 to 19.3 kWh/m2/year.

摘要

含分布式能源的建筑电气化在建筑行业中是一种很有前景的脱碳策略。考虑到运行控制和系统设计之间的相互依赖,集成运行技术和控制优化的分布式能源投资优化能有成效的提高该类建筑的脱碳机会。本研究提出一种多时间尺度的集成优化框架,以同时优化建筑的可再生能源和电气化技术的设计与控制。提出了一种新型的基于深度学习的建筑运行性能预测模型以取代计算量大的控制优化。将有助于解决具有挑战性且计算复杂的多时间尺度集成设计与控制优化问题。将提出的框架应用于住宅建筑,结果证明了该框架有成效的减少碳排放的有效性。与不含分布式能源的控制/设计优化的典型传统建筑能源系统相比,通过对分布式能源和电气化建筑能源系统进行集成化设计与控制优化,所提出的框架可以减少80%的运行碳排放和2.7%的总成本。分别对运行控制和系统设计进行优化无法达到上述性能。进一步场景分析表明,随着电网碳排放强度的下降,能够减少对分布式能源的依赖,但在2050年的电网场景下,分布式能源对建筑的碳减排仍具有很重要作用。总之,本文结果证明,同时减少建筑运行碳排放和净电负荷是可能的:以基准案例相比,本文提出的框架有助于减少80%的碳排放,同时将净电负荷从44.1kWh/m2/year降低至19.3kWh/m2/year.

Abstract

Building electrification with distributed energy resources (DERs) is a promising strategy to decarbonize the building sector. Considering the inter-dependencies between operations control and systems design, integrating technology operations control optimization with DERs investment optimization can cost-effectively enhance such building decarbonization opportunities. This study proposes a multi-timescale integrated optimization framework to simultaneously optimize the design and control of DERs and electrification technologies for buildings. A novel building operational performance prediction model based on deep learning is developed to approximate and replace the computationally expensive control optimization. This helps resolve the challenging, computationally intractable multi-timescale integrated design and control optimization problem. Applying the proposed framework to a residential building, our results demonstrate its effectiveness in cost-efficient carbon emissions reduction. With integrated design and control optimization for DERs and electric building energy systems, the proposed framework reduces operational carbon emissions by 80% and total costs by 2.7% compared to a base case, which uses typical conventional building energy systems without DERs and control/design optimization. Separate optimization of operations control and system design cannot achieve such performance. Further scenario analyses indicate that as power grids become cleaner, the reliance on DERs can be alleviated but remain important in building carbon emission reduction under 2050 power grid scenario. Overall, as our results demonstrate, it is possible to reduce building operational carbon emissions simultaneously with net electrical load: compared to the base case, the proposed framework helps reduce the carbon emission by 80% while driving down the net electrical load from 44.1 to 19.3 kWh/m2/year.

Keywords

Carbon Emission

Building Electrification

Distributed Energy Resources

Deep Learning

Design Optimization

Model Predictive Control

Figure 1. Overview of the methodology for the development and performance assessment of the proposed deep-learning-based multi-timescale integrated optimization framework.

Figure 3. Schematic diagram of the MPC-based control optimization model.

Figure 6. Building performance results, including (a) cost, (b) carbon emission reduction, (c) net electrical load, (d) percent discomfort time, and (e) load shifting index, of the five simulation cases.

Figure 7. Building energy profiles in (a) base case, (b) no optimization case, (c) control optimization case, (d) design optimization case, and (e) integrated optimization case.

关于Applied Energy

本期小编:郭加澄;审核人:彭维珂

《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子11.2,CiteScore 21.1,谷歌学术全球学术期刊第49,工程期刊第19位,可持续能源子领域第2位,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》现已被ESCI收录。2024年将获得第一个影响因子。全部论文可以免费下载。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!

公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org

点击“阅读原文”

喜欢我们的内容?

点个“赞”或者“再看”支持下吧!

AEii国际应用能源
发布应用能源领域资讯,介绍国际应用能源创新研究院工作,推广应用能源优秀项目,增进应用能源领域合作
 最新文章