《Mechanics of Solid Polymers》4.4.3张量运算

文摘   2024-11-15 14:44   江苏  

4.4.3 张量运算

        (二阶)张量比向量包含更多信息:它为每个值和方向分配一个值和方向,并因此可以被认为是从一个向量到另一个向量的映射。在指标形式中,二阶张量可以写为 A = Aij。

        有不同的方法来解释二阶张量。例如,正如前面提到的,二阶张量可以被视为一个线性算子 A,作用在一个向量 u 上生成另一个向量 v = Au。在本文中,简单地将二阶张量视为一个 3 x 3 矩阵通常已经足够。当处理张量时,还有许多重要的操作。以下是最常见操作的定义:

两个张量可以通过添加(或减去)它们的对应分量来进行相加(或相减):一个张量可以作用于一个向量,通过以下乘法和求和生成另一个向量:

• 两个张量可以通过以下的乘法和求和,得到一个新的张量:

• 两个张量的内积(也称为点积)是一个标量,由

• 张量A的转置由,对所有向量u,v定义。

张量的转置也可以用指标表示法写为

这还给出了以下有用的等式

• 张量的是一个标量,由对角线上的项之和给出:

• 张量的行列式可以像计算3×3矩阵的行列式一样计算:

• 一个张量可以唯一地分解为体积变化和体积不变的部分:

一个偏量张量的迹为零。这种分解在处理变形梯度时非常有用,如后续章节将讨论的那样。

• 一个张量也可以分解为扭曲和膨胀部分的乘积:

一个扭曲张量的行列式为零。这种变形梯度在处理变形梯度时非常有用,如后续章节将讨论的那样。

• 一个正交张量Q是具有以下性质的张量:

• 对角张量是具有零非对角项的张量: 

• 张量Au的分量可以通过单位向量e1和ej确定如下:

• 计算张量的函数,例如exp(A),通常很有用。计算这些函数的一种方法是将张量A写成其谱表示(参见第4.5.1节),然后在张量的主值上应用函数:

        从以上讨论可以明显看出,直接符号法比指标符号法更简洁,通常更易理解。因此,接下来几乎完全采用直接符号法。



高性能弹性体结构分析研究团队
致力于聚合物模拟计算、结构配方优化、FEA材料参数测试,持续主客户创造价值
 最新文章