第一作者:王博赟
通讯作者:张晓涛教授 王喜明教授
通讯单位:内蒙古农业大学理学院
DOI: 10.1016/j.ijbiomac.2024.136427
富含重金属离子废水的环境危害是全球生态面临的一个重要挑战,其中Hg(II)对人体的危害极其严重,它较难通过血脑屏障返回血液,因而易逐渐蓄积损害脑组织。Hg(II)废水主要来源于人类活动造成水体汞污染,如氯碱、塑料、电池、电子等工业排放的废水以及废旧医疗器械。目前针对水体重金属离子的治理方法有化学法、物理法、生物法、沉淀法、离子交换树脂、还原法和溶剂萃取法。与传统处理方法相比,基于纤维素基荧光纳米水凝胶探针在便携式传感检测和吸附领域表现出巨大潜力。荧光纳米水凝胶探针是荧光生物传感器不可或缺的重要部分,一个或多个荧光探针通过识别特定分析物的受体部分并发生化学反应,从而将识别过程转化为荧光信号,该荧光信号很容易被检测。基于此,内蒙古农业大学王喜明教授&张晓涛教授团队研发了一种对Hg(II)具有良好的荧光指示检测协同吸附作用的双巯基改性秸秆纤维素水凝胶探针材料(SCDs-KTOCS-gels)。本文详细研究SCDs在不同条件下的稳定性、不同重金属离子对SCDs的猝灭效果、SCDs-KTOCS-gels对Hg(II)最大吸附量的单因素分析以及分析了SCDs-KTOCS-gels对Hg(II)的吸附及指示机理。本研究研发了一种安全、创新、环境友好及高效利用农业废弃物生物质材料的新技术,为工业废水中重金属离子的荧光检测、定量分析及有效治理提供了新的思路和解决方案。本研究以农业废弃物秸秆为原料,制备了一种用于检测及吸附治理水体中重金属离子的双巯基改性秸秆纤维素水凝胶探针材料(SCDs-KTOCS-gels)。实验首先将秸秆进行提纯得到秸秆纤维素,再将其进行羧基化改性得到羧基化秸秆纤维素(TOCS)。将得到的TOCS与1,3-丙二硫醇在水热条件下反应得到SCDs;同时将TOCS与巯丙基三甲氧基硅烷在乙醇体系中超声三小时制得巯基化秸秆纤维素(KTOCS),将其溶解在NaOH/尿素溶剂中,使用环氧氯丙烷作为化学交联剂,得到KTOCS-gels。将KTOCS-gels浸渍在SCDs中,成功制备SCDs-KTOCS-gels。实验结果表明,SCDs-KTOCS-gels对Hg(II)的吸附能力高达193 mg/g。通过吸附动力学和吸附等温线研究发现,伪二阶动力学模型和Temkin模型可以准确地描述吸附过程。此外,SCDs-KTOCS-gels对浓度为150-500 mg/L的Hg(II)表现出良好的荧光线性关系,检测限为 1.5668 mg/L。该研究为废弃生物质资源的高值化综合利用提供新途径和方向,进一步拓展了生物质资源在工业水体重金属污染治理及其可视化荧光检测等领域中的广泛应用。Scheme 1. Schematic diagram of the preparation of (a) KTOCS, (b) SCDs, and (c) SCDs–KTOCS gels.Fig. 1. Characteristics of SCDs. (a) TEM image, (b) particle diameter, (c) high-resolution TEM image, (d) Raman spectra, (e) FTIR spectra, and (f)13C NMR.Fig. 2. XPS fine spectra of SCDs. (a) XPS full spectrum of SCDs, (b) C 1s spectra of SCDs, (c) N 1s spectra of SCDs, and (d) S 2p spectra of SCDs.Fig. 3. Physical–chemical, optical sensing, and PL properties of SCDs. (a) UV–vis emission spectra, emission images, and absorption spectra of SCDs. (b) UV–vis 365 nm photos of SCDs. (c) Emission spectrum at various excitation wavelengths. (d) PL 3D photo of SCDs. (e and f) Stability of fluorescence intensity under various pH values and NaCl concentrations. (g) Fluorescent quenching of SCDs under various metal ions. (h) Addition of Hg(II) to SCDs at concentrations varying from 5 to 100 mg/L causes a fluorescent response. (i) Relation curve connecting variations in Hg(II) concentrations to variations in fluorescence intensity.Fig. 4. Schematic fabrication of the SCDs–KTOCS–gels. (a) SEM images, (b and c) FT-IR spectrum, (d) C 1s, and (e–g) O 1s in the broad-scan XPS spectrum.Fig. 5. 13C NMR of SCDs–KTOCS–gels.Fig. 6. (a) The fluorescence quenching that occurs with the SCDs–KTOCS–gels and Hg(II), (b and c) SEM images, (d) FT-IR spectra, and (e–m) EDS energy spectra of the SCDs–KTOCS–gels and SCDs–KTOCS gel–Hg(II).Fig. 7. (a–d) Effects of initial Hg(II) concentration, temperature, pH, and time. (e) Fitting of Hg(II) adsorption values at various adsorption times to the pseudo-first-order and pseudo-second-order models. (f) Fitting of Hg(II) adsorption values at different initial concentrations to the Freundlich and Langmuir adsorption isotherm models.Fig. 8. (a) SCDs–KTOCS gel–Hg(II)' XPS survey spectrum following Hg(II) adsorption. (b) XPS high-resolution spectrogram of Hg 4f following adsorption. (c) XPS high-resolution spectrograms of C 1s and (d) S 2p for SCDs–KTOCS–gels–Hg(II) (front and back adsorption).Scheme 2. Adsorption and detection mechanism of Hg(II) by the SCDs–TKOCS gels.综上所述,研究团队成功地开发了对重金属阳离子Hg(II)具有高效吸附性能协同荧光检测双效并举的双巯基改性秸秆纤维素水凝胶探针材料(SCDs-TKOCS-gels)。因SCDs-TKOCS-gels具有三维孔隙结构、表面含有丰富的羧基、羟基及巯基等活性官能团,使得它可以对重金属离子Hg(II)起到显著的吸附去除协同荧光检测的效果,SCDs-TKOCS-gels对Hg(II)的最大吸附容量为193 mg/g。此外,SCDs-KTOCS-gels对浓度为150-500 mg/L的Hg(II)表现出良好的荧光线性关系,检测限为 1.5668 mg/L。研究结果表明,将S掺杂碳量子点与巯基化秸秆纤维素水凝胶相结合制备多功能的量子点掺杂水凝胶复合材料,可为废弃农业生物质资源在水体污染物治理及灵敏荧光检测重金属离子领域中提供了新的机遇。未来,以生物质量子点为载体掺杂到生物质水凝胶中形成三维交联网状的新型荧光水凝胶材料必将成为废弃生物质资源高值化发展的重要方向之一。Wang, B., Zhang, W., Zhong, Y., Wang, X. and Zhang, X. (2024) Fluorescent cellulose hydrogels based on corn stalk of double sulfhydryl functional group modification for Hg(II) removal and detection. International Journal of Biological Macromolecules, 136427. https://doi.org/10.1016/j.ijbiomac.2024.136427.
张晓涛,教授,博导。现任职于内蒙古农业大学理学院。获国家梁希林业科学技术二等奖、内蒙古自然科学二等奖、中国国际“互联网+”大学生创新创业大赛国家铜奖、内蒙古自治区“草原英才”创新人才、内蒙古“英才兴蒙”高层次人才等。主要致力于水体环境污染物治理领域的研究工作,包括生物质环境功能材料的结构设计合成、新型环境污染物的治理、过氧化物催化技术、光催化技术及废弃生物质的资源化利用等。目前已主持十余项国家及省部级项目,发表SCI期刊论文50余篇,授权专利30余项,颁布标准5项,出版专著3部,研发新材料13种等。
通讯邮箱:lianzixiaotao@163.com
关注环材有料视频号,提供会议、讲座等直播服务!
微信加群:
环材有料为广大环境材料开发研究领域的专家学者、研发人员提供信息交流分享平台,我们组建了环境材料热点领域的专业交流群,欢迎广大学者和硕博学生加入。
进群方式:扫下方二维码添加小编为好友,邀请入群。请备注:名字-单位-研究方向。
扫二维码添加小编微信,邀请入群,获得更多资讯