【神经科学前沿技术培训系列】详见文末
【内容宣传、讲座/报告/课程等学术合作】请联系微信:Wang_Sizhen
审阅︱乐卫东
责编︱王思珍
神经退行性疾病(Neurodegenerative diseases,NDs)是以神经元和胶质细胞进行性功能障碍为特征的神经系统疾病,导致其在中枢和/或周围神经系统中的结构和功能退化。既往对NDs的研究往往忽视了小脑的作用,越来越多的临床和生物学证据表明小脑与NDs之间存在重要联系。传统上,小脑被认为是控制运动的结构,例如运动、步态、姿势和平衡。然而,近年来越来越多的研究强调了小脑的非运动功能,包括认知、行为和情感处理。小脑可能通过多种机制参与NDs的发生和发展,包括神经退行性变、神经炎症、氧化应激和代谢改变等。靶向小脑的治疗方式在治疗神经退行性疾中可能是有价值的。1. 阿尔茨海默病(Alzheimer’s disease,AD)和小脑
既往对于AD的研究主要集中于大脑和海马,但新兴的研究揭示了小脑在AD中的作用。AD小脑表现出典型的Aβ和Tau病理,并且小脑可能与认知和行为变化有关。我们团队之前的研究揭示了在AD模型小鼠出现病理变化之前小脑就已经出现电生理改变[1]。在早期阶段,小脑可能起到代偿作用,减缓临床症状的进展[2, 3]。AD小脑表现出显著的线粒体功能障碍、氧化应激和代谢紊乱,并且可能发生在疾病早期[4, 5]。此外,在AD小脑中观察到浦肯野细胞的丢失、颗粒细胞的减少、小胶质细胞的激活和星形胶质细胞的增殖[6, 7]。小脑结构和功能的变化可能与疾病进展有关,并可能有助于AD的早期诊断。2. 帕金森病(Parkinson’s disease,PD)和小脑
在PD中,小脑中存在α-synuclein和多巴胺能功能障碍[8]。PD患者表现出明显的小脑灰质萎缩[9]。PD患者的小脑变化可能与临床症状和疾病分期有关,随着疾病的进展,小脑体积逐渐缩小[10]。PD患者小脑也与运动和精神症状有关[11-13]。神经递质变化和代谢改变发生在PD小脑中,与疾病进展相关[14, 15]。小脑在PD中受到影响,并与疾病进展相关。3. 肌萎缩侧索硬化症(Amyotrophic lateral sclerosis,ALS)和小脑
ALS 的特征性病理变化包括谷氨酸兴奋性毒性、蛋白质错误折叠和异常聚集、炎症、细胞凋亡、线粒体功能障碍和氧化应激[16]。在ALS患者中观察到小脑显着萎缩[17]。ALS 患者小脑中可以发现浦肯野细胞丢失、星形胶质细胞增加和小胶质细胞活化[18, 19]。ALS 患者小脑氧化应激和炎症加剧[20]。小脑受ALS典型病理的影响,表现出结构和功能异常,并且与临床症状有关。4. C型尼曼-匹克病和小脑
小脑在C型尼曼-匹克病的早期阶段受到严重影响[21]。小脑体积减少与患者临床症状的严重程度有关[22]。浦肯野细胞死亡发生在C型尼曼-匹克病患者的小脑中,随着疾病的进展而细胞死亡增加[23]。C型尼曼-匹克病模型小鼠小脑早期出现小胶质细胞激活和星形胶质细胞的显著增加[24, 25]。5. 亨廷顿病(Huntington’s disease,HD)和小脑
突变的亨廷顿蛋白在HD患者小脑中显著过表达[26]。HD患者小脑的灰质和白质体积都显著减少,表现出明显的萎缩[27]。HD患者的小脑萎缩发生在疾病早期,与疾病进展和临床症状有关[28, 29]。HD患者的小脑中存在神经退行性变和代谢紊乱[30, 31]。6. 额颞叶痴呆(Frontotemporal dementia,FTD)和小脑
FTD 以家族性和散发性形式存在,其中C9orf72突变是最常见的原因。C9orf72-FTD小脑中六核苷酸重复扩增与疾病严重程度相关[32]。在FTD中,小脑与行为和认知障碍有关[33]。FTD小脑表现出明显的萎缩,并且与疾病症状和进展相关[34, 35]。小脑相关治疗方法可促进NDs的治疗并改善临床症状。小脑磁刺激可有效调节AD患者的胆碱能活性[36]。对小脑的经颅电刺激可以改善PD患者的步态障碍[37]。小脑的经颅交流电刺激可以减少PD患者的静止性震颤[38]。小脑的经颅直流电刺激是增强PD运动学习的潜在干预措施[39]。小脑的靶向治疗对NDs具有巨大治疗潜力,需要进一步研究小脑相关治疗方法对NDs的价值。小脑相关治疗方法可能为治疗这些疾病提供有前途且安全的选择。
在既往NDs的相关的研究中,小脑通常没有得到足够的关注。目前表明,小脑在NDs中起着关键作用。首先,小脑在NDs中受到影响。小脑萎缩发生在NDs中,并与疾病的严重程度相关。甚至于在疾病的早期阶段,小脑就出现萎缩。不同类型的NDs可能表现出不同的小脑改变。特定小脑区域的受累可能导致特定症状。其次,小脑可能起到储备和代偿作用,减缓疾病进展。但是,这种代偿能力可能会在疾病晚期丢失。最后,NDs中的小脑会出现各种病理和生化变化,主要是神经退行性变、神经炎症、线粒体功能障碍、代谢紊乱和神经递质变化。小脑磁刺激和电刺激、物理疗法、干细胞疗法和药物治疗可能有助于这些疾病的治疗。总之,小脑对NDs的早期诊断、治疗和预防疾病进展具有重要价值。
原文链接:https://doi.org/10.1016/j.isci.2024.111194转载须知:“逻辑神经科学”特邀稿件,且作者授权发布;本内容著作权归作者和“逻辑神经科学”共同所有;欢迎个人转发分享,未经授权禁止转载,违者必究。
“逻辑神经科学”微信群:文献学习
扫码添加微信,并备注:逻辑-文献-姓名-单位-研究领域-学位/职称[1]. Yu H, Wang M, Yang Q, Xu X, Zhang R, Chen X, Le W: The electrophysiological and neuropathological profiles of cerebellum in APP(swe) /PS1(ΔE9) mice: A hypothesis on the role of cerebellum in Alzheimer's disease. Alzheimers Dement 2023, 19(6):2365-2375.[2]. Yang C, Gao X, Liu N, Sun H, Gong Q, Yao L, Lui S: Convergent and distinct neural structural and functional patterns of mild cognitive impairment: a multimodal meta-analysis. Cereb Cortex 2023, 33(14):8876-8889.[3]. Gelfo F, Serra L, Petrosini L: New prospects on cerebellar reserve: Remarks on neuroprotective effects of experience in animals and humans. Front Syst Neurosci 2022, 16:1088587.[4]. Sepulveda-Falla D, Barrera-Ocampo A, Hagel C, Korwitz A, Vinueza-Veloz MF, Zhou K, Schonewille M, Zhou H, Velazquez-Perez L, Rodriguez-Labrada R et al: Familial Alzheimer's disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis. J Clin Invest 2014, 124(4):1552-1567.[5]. Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW, Jr., Cohen ML, Wang X, Siedlak SL, Dwyer BE, Hayashi T et al: Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis 2010, 19(1):363-372.[6]. Singh-Bains MK, Linke V, Austria MDR, Tan AYS, Scotter EL, Mehrabi NF, Faull RLM, Dragunow M: Altered microglia and neurovasculature in the Alzheimer's disease cerebellum. Neurobiol Dis 2019, 132:104589.[7]. Mavroudis IA, Fotiou DF, Adipepe LF, Manani MG, Njau SD, Psaroulis D, Costa VG, Baloyannis SJ: Morphological changes of the human purkinje cells and deposition of neuritic plaques and neurofibrillary tangles on the cerebellar cortex of Alzheimer's disease. Am J Alzheimers Dis Other Demen 2010, 25(7):585-591.[8]. Wu T, Hallett M: The cerebellum in Parkinson's disease. Brain 2013, 136(Pt 3):696-709.[9]. Ma X, Su W, Li S, Li C, Wang R, Chen M, Chen H: Cerebellar atrophy in different subtypes of Parkinson's disease. J Neurol Sci 2018, 392:105-112.[10]. Kerestes R, Laansma MA, Owens-Walton C, Perry A, van Heese EM, Al-Bachari S, Anderson TJ, Assogna F, Aventurato Í K, van Balkom TD et al: Cerebellar Volume and Disease Staging in Parkinson's Disease: An ENIGMA-PD Study. Mov Disord 2023, 38(12):2269-2281.[11]. Maiti B, Koller JM, Snyder AZ, Tanenbaum AB, Norris SA, Campbell MC, Perlmutter JS: Cognitive correlates of cerebellar resting-state functional connectivity in Parkinson disease. Neurology 2020, 94(4):e384-e396.[12]. Wang Y, Zhang S, Yang H, Zhang X, He S, Wang J, Li J: Altered cerebellum functional network on newly diagnosed drug-naïve Parkinson's disease patients with anxiety. Transl Neurosci 2021, 12(1):415-424.[13]. Piccinin CC, Campos LS, Guimarães RP, Piovesana LG, Dos Santos MCA, Azevedo PC, Campos BM, de Rezende TJR, Amato-Filho A, Cendes F et al: Differential Pattern of Cerebellar Atrophy in Tremor-Predominant and Akinetic/Rigidity-Predominant Parkinson's Disease. Cerebellum 2017, 16(3):623-628.[14]. Yeung PKK, Lai AKW, Son HJ, Zhang X, Hwang O, Chung SSM, Chung SK: Aldose reductase deficiency leads to oxidative stress-induced dopaminergic neuronal loss and autophagic abnormality in an animal model of Parkinson's disease. Neurobiol Aging 2017, 50:119-133.[15]. Riou A, Houvenaghel JF, Dondaine T, Drapier S, Sauleau P, Drapier D, Duprez J, Guillery M, Le Jeune F, Verin M et al: Functional Role of the Cerebellum in Parkinson Disease: A PET Study. Neurology 2021, 96(23):e2874-e2884.[16]. Xu X, Shen D, Gao Y, Zhou Q, Ni Y, Meng H, Shi H, Le W, Chen S, Chen S: A perspective on therapies for amyotrophic lateral sclerosis: can disease progression be curbed? Transl Neurodegener 2021, 10(1):29.[17]. Gellersen HM, Guo CC, O'Callaghan C, Tan RH, Sami S, Hornberger M: Cerebellar atrophy in neurodegeneration-a meta-analysis. J Neurol Neurosurg Psychiatry 2017, 88(9):780-788.[18]. Sala A, Iaccarino L, Fania P, Vanoli EG, Fallanca F, Pagnini C, Cerami C, Calvo A, Canosa A, Pagani M et al: Testing the diagnostic accuracy of [18F]FDG-PET in discriminating spinal- and bulbar-onset amyotrophic lateral sclerosis. Eur J Nucl Med Mol Imaging 2019, 46(5):1117-1131.[19]. Tan RH, Kril JJ, McGinley C, Hassani M, Masuda-Suzukake M, Hasegawa M, Mito R, Kiernan MC, Halliday GM: Cerebellar neuronal loss in amyotrophic lateral sclerosis cases with ATXN2 intermediate repeat expansions. Ann Neurol 2016, 79(2):295-305.[20]. Kim SH, Engelhardt JI, Henkel JS, Siklós L, Soós J, Goodman C, Appel SH: Widespread increased expression of the DNA repair enzyme PARP in brain in ALS. Neurology 2004, 62(2):319-322.[21]. Walterfang M, Fahey M, Desmond P, Wood A, Seal ML, Steward C, Adamson C, Kokkinos C, Fietz M, Velakoulis D: White and gray matter alterations in adults with Niemann-Pick disease type C: a cross-sectional study. Neurology 2010, 75(1):49-56.[22]. Bowman EA, Walterfang M, Abel L, Desmond P, Fahey M, Velakoulis D: Longitudinal changes in cerebellar and subcortical volumes in adult-onset Niemann-Pick disease type C patients treated with miglustat. J Neurol 2015, 262(9):2106-2114.[23]. Sarna JR, Larouche M, Marzban H, Sillitoe RV, Rancourt DE, Hawkes R: Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease. J Comp Neurol 2003, 456(3):279-291.[24]. Cougnoux A, Yerger JC, Fellmeth M, Serra-Vinardell J, Martin K, Navid F, Iben J, Wassif CA, Cawley NX, Porter FD: Single Cell Transcriptome Analysis of Niemann-Pick Disease, Type C1 Cerebella. Int J Mol Sci 2020, 21(15).[25]. Santiago-Mujica E, Flunkert S, Rabl R, Neddens J, Loeffler T, Hutter-Paier B: Hepatic and neuronal phenotype of NPC1(-/-) mice. Heliyon 2019, 5(3):e01293.[26]. Franich NR, Basso M, André EA, Ochaba J, Kumar A, Thein S, Fote G, Kachemov M, Lau AL, Yeung SY et al: Striatal Mutant Huntingtin Protein Levels Decline with Age in Homozygous Huntington's Disease Knock-In Mouse Models. J Huntingtons Dis 2018, 7(2):137-150.[27]. Ruocco HH, Bonilha L, Li LM, Lopes-Cendes I, Cendes F: Longitudinal analysis of regional grey matter loss in Huntington disease: effects of the length of the expanded CAG repeat. J Neurol Neurosurg Psychiatry 2008, 79(2):130-135.[28]. Franklin GL, Camargo CHF, Meira AT, Lima NSC, Teive HAG: The Role of the Cerebellum in Huntington's Disease: a Systematic Review. Cerebellum 2021, 20(2):254-265.[29]. Ruocco HH, Lopes-Cendes I, Li LM, Santos-Silva M, Cendes F: Striatal and extrastriatal atrophy in Huntington's disease and its relationship with length of the CAG repeat. Braz J Med Biol Res 2006, 39(8):1129-1136.[30]. D'Egidio F, Castelli V, Lombardozzi G, Ammannito F, Cimini A, d'Angelo M: Therapeutic advances in neural regeneration for Huntington's disease. Neural Regen Res 2024, 19(9):1991-1997.[31]. Carroll JB, Deik A, Fossale E, Weston RM, Guide JR, Arjomand J, Kwak S, Clish CB, MacDonald ME: HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation. PLoS One 2015, 10(8):e0134465.[32]. van Blitterswijk M, DeJesus-Hernandez M, Niemantsverdriet E, Murray ME, Heckman MG, Diehl NN, Brown PH, Baker MC, Finch NA, Bauer PO et al: Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study. Lancet Neurol 2013, 12(10):978-988.[33]. Chen Y, Kumfor F, Landin-Romero R, Irish M, Piguet O: The Cerebellum in Frontotemporal Dementia: a Meta-Analysis of Neuroimaging Studies. Neuropsychol Rev 2019, 29(4):450-464.[34]. Cash DM, Bocchetta M, Thomas DL, Dick KM, van Swieten JC, Borroni B, Galimberti D, Masellis M, Tartaglia MC, Rowe JB et al: Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study. Neurobiol Aging 2018, 62:191-196.[35]. Hornberger M: Assessment of psychiatric changes in C9ORF72 frontotemporal dementia. Alzheimers Res Ther 2012, 4(6):49.[36]. Di Lorenzo F, Martorana A, Ponzo V, Bonnì S, D'Angelo E, Caltagirone C, Koch G: Cerebellar theta burst stimulation modulates short latency afferent inhibition in Alzheimer's disease patients. Front Aging Neurosci 2013, 5:2.[37]. Nojima I, Horiba M, Sahashi K, Koganemaru S, Murakami S, Aoyama K, Matsukawa N, Ono Y, Mima T, Ueki Y: Gait-combined closed-loop brain stimulation can improve walking dynamics in Parkinsonian gait disturbances: a randomised-control trial. J Neurol Neurosurg Psychiatry 2023, 94(11):938-944.[38]. Rahimi S, Towhidkhah F, Baghdadi G, Forogh B, Saadat P, Soleimani G, Habibi SA: Modeling of cerebellar transcranial electrical stimulation effects on hand tremor in Parkinson's disease. Front Aging Neurosci 2023, 15:1187157.[39]. de Albuquerque LL, Pantovic M, Clingo MG, Fischer KM, Jalene S, Landers MR, Mari Z, Poston B: Long-Term Application of Cerebellar Transcranial Direct Current Stimulation Does Not Improve Motor Learning in Parkinson's Disease. Cerebellum 2022, 21(3):333-349.