好文转载|BMJ:气候变化导致气温升高对传染病的影响

文摘   2024-12-12 20:04   湖北  

转自 环境与职业医学

近日,全球顶级医学期刊BMJ发表了题为“气候变化导致气温升高对传染病的影响”(The impact of increasing temperatures due to climate change on infectious diseases)的综述论文。该文章系统探讨了气温上升对登革热、疟疾等媒介传播疾病以及霍乱等经水传播疾病的影响,阐明了气候变化加剧气候敏感传染病负担的作用途径,并呼吁全球医疗公共卫生系统加大应对措施的力度。福建医科大学向建军教授和澳大利亚阿德莱德大学毕鹏教授为本文的共同通信作者,阿德莱德大学公共卫生学院研究员Olga Anikeeva为第一作者。


阅读目录

1

研究背景

2

数据来源

3

气温升高对病媒传播疾病和人畜共患疾病的影响

4

气温升高对食源性和水源性疾病的影响

5

应对气候变化对全球健康的挑战:国际机构和医疗保健系统的响应策略

6

总结


1. 研究背景

全球气候变化正在加剧高温热浪的频率和强度,这对传染病的传播有显著影响[1]。全球气温的升高和降雨模式的变化使得蚊子等媒介的繁殖环境更加有利,从而加速登革热、疟疾等疾病的传播[2]。同时,气候变化导致的洪水污染水源,增加了霍乱、沙门氏菌等水源性和食源性疾病的风险[3-4]。这篇综述阐述了气候变化对全球公共卫生的影响,呼吁全球卫生系统及医护人员采取积极措施,以应对气候变化带来的传染病挑战。

▲图1:气候变化对传染病传播模式的影响


2. 数据来源

这项研究通过对2024年2月至4月的文献检索得出,使用了“高温”、“气候变化”、“全球变暖”和“传染病”等关键词。纳入标准为同行评审过的英文文献,涵盖了高温对至少一种传染病的影响。文献类型包括系统评价、随机对照试验和观察性研究。表1总结了纳入研究的总体结果。

▲表1:关于高温对特定传染病影响的文献综述


3. 气温升高对虫媒传播疾病的影响

登革热:研究发现,温度每升高1°C,登革热感染风险增加13%[5]。降雨和湿度也会影响登革热的传播,但极端天气可能抑制蚊子的活动,抑制病毒传播[6]

疟疾:气温升高和降雨模式变化会扩大蚊子栖息地,增加高海拔和寒冷地区的传播风险,这可能会增加数百万人面临疟疾的风险[7-8]

日本脑炎:观察性研究一致报告了日本脑炎病例与气候变量(如温度、相对湿度和降雨量)之间存在正相关的关联[9-11]。例如,在印度亚热带潮湿地区进行的一项时间序列分析研究估计,日平均温度、降雨量和相对湿度每增加1个单位,日本脑炎的入院人数就会分别增加 22.2%,0.6%和 5.2%[12]

西尼罗河热:气候变暖会加速蚊子和病原体的发育,提高西尼罗病毒的媒介能力[13-15]。在北美,每周平均最高气温每升高 5°C,西尼罗河病毒感染人数就会激增 32%~50% [16]。此外,最近的实验研究发现了气候变化对西尼罗病毒的影响存在与其他虫媒病毒出现共循环的现象[17-18]

寨卡病毒:寨卡病毒通过蚊虫传播,气温在26~30°C时传播最为活跃[19]。哥伦比亚的一项生态学研究应用贝叶斯结构化加法回归模型来评估寨卡病毒疾病的高风险区域,发现该疾病与区域气象因素(温度、降雨量和相对湿度)之间存在显著的正相关[20]

血吸虫病:血吸虫中间宿主蜗牛的繁殖、生存和传播,以及蠕虫在宿主内的发育,都对温度变化高度敏感[21]。适度的降水有利于蜗牛的繁殖,而强降雨可能会破坏蜗牛的栖息地并降低尾蚴的生存能力[22]。与气候变化相关的干旱、水盐度和 pH 值的变化也已被确定为血吸虫病传播的影响因素[23]

利什曼病:中国在对 2005—2015 年间发生的两次利什曼病疫情进行的一项生态研究发现,较高的温度和较低的相对湿度会增加利什曼病的风险[24]。伊朗的一项研究使用地理信息系统和回归模型分析了人口、环境和地理数据,以确定影响利什曼病分布的环境和生态因素,其中气温升高和海拔较低、降雨量和湿度与病例增加相关[25]

肾综合征出血热:一项针对中国19个城市的研究发现,最高气温每升高 1°C,肾综合征出血热病例就会增加1.6%; 每周降雨量增加 1 mm,病例就会随之增加0.2%; 平均相对湿度每增加1%,肾综合征出血热增加0.9%[26]


4. 气温升高对食源性和水源性疾病的影响

霍乱:霍乱的爆发与气温上升和洪水密切相关,尤其是在缺乏清洁水源的地区,气温升高会使病原体在水中的存活时间延长[27]

沙门氏菌病:沙门氏菌是常见的食源性病原体,35~37°C是沙门氏菌生长的最佳温度,高温促进其在食物中的传播[28]。研究表明,气温每升高1°C,感染风险增加3%~13%[29]

弯曲杆菌病:温度升高与弯曲杆菌发病率的关系不如沙门氏菌明确,不同地区的研究结果不一[30]。在某些国家,如英格兰和德国,温度升高导致更多病例,而在其他地区,如韩国,未观察到显著关联[31-35]

志贺菌病:研究表明,温度对志贺菌病传播的影响因地区而异[36]。在中国农村和城市地区,气候变化显著影响志贺菌病的传播[37-40]

大肠杆菌感染:荟萃分析结果表明,温度每升高1°C,大肠杆菌感染风险增加8%~10%[38-41]

军团菌病:据报道,气温升高会增加一些地区的军团菌发病率,但影响很小且研究结果不一致[42-45]。高温与强降雨或湿度相结合可能比单独使用温度更适合预测其风险[46-48]

病毒性胃肠炎及轮状病毒感染:气候因素与病毒性腹泻之间的关联复杂,尚未完全明确[49]。某些研究显示温度升高减少轮状病毒感染[50],但也有研究显示高温增加了感染风险[51]

诺如病毒感染:寒冷气候有利于诺如病毒的存活,导致暴发风险增加,表明较低的温度可能有利于病原体在环境中的生存[52-53]。温度与诺如病毒感染之间的这种负相关(相对风险:0.85)显示滞后效应长达7周[54-55]。与温度不同,湿度和降雨量可能是非洲诺如病毒更敏感、更强的预测指标[56-58]

手足口病: 研究表明,高温和低温(非最佳环境温度)都可能促进手足口病的传播,表现出温度光谱两端两个峰值的 M 形关系[59-61]。中国、越南和美国的一些系统评价和生态研究报告称,温度与手足口病之间存在正相关的关联,并与其他气候变量(如湿度、风速、气压和阳光)存在相互作用[62-67]


5. 应对气候变化对全球健康的挑战:国际机构和医疗保健系统的响应

疾病监测、通知和信息共享:为了提高卫生系统对气候敏感性传染病的应对能力,开发综合监测和早期预警系统至关重要[68-69]。“One Health”倡议促进跨部门和跨地区合作,利用卫星遥感与地理信息系统技术识别传染病风险,尤其在中低收入国家,数字化疾病监测尤为重要。此外,病媒监测系统可以加强对病媒密度和分布的掌握,而人工智能与机器学习的应用更是可以提升数据整合与预测的精准性[70-71]

▲图2:气候敏感传染病综合监测系统的需求

以风险地区为目标的监测和响应系统:全球气候预报与媒介监测数据的结合使得传染病暴发条件能够提前数周或数月预测。一项生态研究使用气候、人口和登革热通知数据集评估了哥伦比亚登革热早期预警信号模型的有效性,该数据集结合了温度、降水、湿度、海拔和人口密度数据,发现它在提前一到五个月成功检测到75%的疫情[72]

医疗保健劳动力知识和能力:气候变化导致传染病的扩散,许多医护人员,尤其在过去不常处理此类疾病的地区,缺乏相关知识和经验。尽管大多数医学生意识到气候变化的健康影响,但在中国和埃塞俄比亚,分别超过80%和90%的学生认为自己未做好准备[73]。澳大利亚和印度的医护人员也面临类似的知识短缺[74-76]。因此,应该调整医疗保健专业教育和培训,使之更加关注极端高温对传染病风险的影响以及更广泛地关注气候变化对健康的影响。

医疗保健资源和协作:气候变化对传染病的影响对卫生资源的分配构成重大挑战,全球合作与跨部门合作至关重要[77]。低收入和中等收入国家由于资源不足,在实施气候相关政策方面面临更大困难[78-80]。应通过加大投资与培训,帮助这些国家提升传染病预防与管理能力尤为必要。同时,全球合作尤其是通过世卫组织,可以促进信息共享和经验交流,进一步增强各国的应对能力[81]


6. 结论

气候变化加剧了病媒传播、食源性和水源性疾病的风险,如登革热、疟疾和霍乱等。全球卫生系统应采取积极的预防措施,加强疾病监测和早期预警系统建设,同时加大医疗教育和全球合作的力度,以应对气候变化带来的传染病挑战。进一步的研究还需关注气候变化与特定疾病之间的复杂关系,以制定更为有效的政策干预措施。


向上滑动阅览

参考文献:

[1]Perkins-Kirkpatrick SE, Lewis SC. Increasing trends in regional heatwaves. Nat Commun2020;11:3357.

[2]Baharom M, Ahmad N, Hod R, Arsad FS, Tangang F. The impact of meteorological factors on communicable disease incidence and its projection: A systematic review. Int J Environ Res Public Health2021;18:11117.

[3]utla AS, Akanda AS, Islam S. A framework for predicting endemic cholera using satellite derived environmental determinants. Environmental Modelling & Software 2013;47:148e58

[4]He XJ. Information on impacts of climate change and adaptation in China. J Environ Inform2017;29:110-21.

[5]Damtew YT, Tong M, Varghese BM, et al. Effects of high temperatures and heatwaves on dengue fever: a systematic review and meta-analysis. EBioMedicine2023;91:104582.

[6]Baharom M, Ahmad N, Hod R, Arsad FS, Tangang F. The impact of meteorological factors on communicable disease incidence and its projection: A systematic review. Int J Environ Res Public Health2021;18:11117.

[7]Lesne J. Charting the evidence for climate change impacts on the global spread of malaria and dengue and adaptive responses: a scoping review of reviews. Environnement. Risques et Sante2022;21:310-2.

[8]Mordecai EA, Ryan SJ, Caldwell JM, Shah MM, LaBeaud AD. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet Health2020;4:e416-23.

[9]Bi P, Tong S, Donald K, Parton KA, Ni J. Climate variability and transmission of Japanese encephalitis in eastern China. Vector Borne Zoonotic Dis2003;3:111-5.

[10]Bi P, Zhang Y, Parton KA. Weather variables and Japanese encephalitis in the metropolitan area of Jinan city, China. J Infect2007;55:551-6.

[11]Hsu SM, Yen AM, Chen TH. The impact of climate on Japanese encephalitis. Epidemiol Infect2008;136:980-7.

[12]Impoinvil DE, Solomon T, Schluter WW, et al. The spatial heterogeneity between Japanese encephalitis incidence distribution and environmental variables in Nepal. PLoS One2011;6:e22192.

[13]Fay RL, Keyel AC, Ciota AT. Chapter Three - West Nile virus and climate change. In: Roossinck MJ, ed. Advances in Virus Research.Academic Press, 2022: 147-93.

[14]Heidecke J, Lavarello Schettini A, Rocklöv J. West Nile virus eco-epidemiology and climate change. PLOS Clim2023;2:e0000129

[15]Rocklöv J, Dubrow R. Climate change: an enduring challenge for vector-borne disease prevention and control. Nat Immunol2020;21:479-83.

[16]Paz S. Climate change impacts on West Nile virus transmission in a global context. Philos Trans R Soc Lond B Biol Sci2015;370:20130561.

[17]Simonin Y. Circulation of West Nile Virus and Usutu Virus in Europe: Overview and Challenges. Viruses2024;16:599.

[18]Peng J, Zhang M, Wang G, Zhang D, Zheng X, Li Y. Biased virus transmission following sequential coinfection of Aedes aegypti with dengue and Zika viruses. PLoS Negl Trop Dis2024;18:e0012053.

[19]Delrieu M, Martinet JP, O’Connor O, et al. Temperature and transmission of chikungunya, dengue, and Zika viruses: A systematic review of experimental studies on Aedes aegypti and Aedes albopictus. Curr Res Parasitol Vector Borne Dis2023;4:100139.

[20]Chien LC, Sy F, Pérez A. Identifying high risk areas of Zika virus infection by meteorological factors in Colombia. BMC Infect Dis2019;19:888.

[21]Kalinda C, Chimbari M, Mukaratirwa S. Implications of Changing Temperatures on the Growth, Fecundity and Survival of Intermediate Host Snails of Schistosomiasis: A Systematic Review. Int J Environ Res Public Health2017;14:80.

[22]Tabo Z, Kalinda C, Breuer L, Albrecht C. Exploring the interplay between climate change and schistosomiasis transmission dynamics. Infect Dis Model2023;9:158-76.

[23]Adekiya TA, Aruleba RT, Oyinloye BE, Okosun KO, Kappo AP. The effect of climate change and the snail-schistosome cycle in transmission and bio-control of schistosomiasis in Sub-Saharan Africa. Int J Environ Res Public Health2019;17:181.

[24]Li Y, Zheng C. Associations between Meteorological Factors and Visceral Leishmaniasis Outbreaks in Jiashi County, Xinjiang Uygur Autonomous Region, China, 2005-2015. Int J Environ Res Public Health2019;16:1775.

[25]Ghatee MA, Sharifi I, Mohammadi N, Moghaddam BE, Kohansal MH. Geographical and climatic risk factors of cutaneous leishmaniasis in the hyper-endemic focus of Bam County in southeast Iran. Front Public Health2023;11:1236552.

[26]Xiang J, Hansen A, Liu Q, et al. Impact of meteorological factors on hemorrhagic fever with renal syndrome in 19 cities in China, 2005-2014. Sci Total Environ2018;636:1249-56.

[27]Dietrich J, Hammerl J-A, Johne A, et al. Impact of climate change on foodborne infections and intoxications. J Health Monit2023;8(Suppl 3):78-92.

[28]Shmeleva E. The influence of climate change on the spread of human salmonellosis (Mini-review). Acta Agrar Kvár2020;24:89-107.

[29]Chua PLC, Ng CFS, Tobias A, Seposo XT, Hashizume M. Associations between ambient temperature and enteric infections by pathogen: a systematic review and meta-analysis. Lancet Planet Health2022;6:e202-18.

[30]Austhof E, Warner S, Helfrich K, et al. Exploring the association of weather variability on Campylobacter - A systematic review. Environ Res2024;252:118796.

[31]Djennad A, Lo Iacono G, Sarran C, et al. Seasonality and the effects of weather on Campylobacter infections. BMC Infect Dis2019;19:255.

[32]Oberheim J, Höser C, Lüchters G, Kistemann T. Small-scaled association between ambient temperature and campylobacteriosis incidence in Germany. Sci Rep2020;10:17191.

[33]Rosenberg A, Weinberger M, Paz S, Valinsky L, Agmon V, Peretz C. Ambient temperature and age-related notified Campylobacter infection in Israel: A 12-year time series study. Environ Res2018;164:539-45.

[34]Kuhn KG, Nygård KM, Guzman-Herrador B, et al. Campylobacter infections expected to increase due to climate change in Northern Europe. Sci Rep2020;10:13874.

[35]Park MS, Park KH, Bahk GJ. Combined influence of multiple climatic factors on the incidence of bacterial foodborne diseases. Sci Total Environ2018;610-611:10-6.

[36]Wu X, Liu J, Li C, Yin J. Impact of climate change on dysentery: Scientific evidences, uncertainty, modeling and projections. Sci Total Environ2020;714:136702.

[37]Zhang Y, Bi P, Sun Y, Hiller JE. Projected Years Lost due to Disabilities (YLDs) for bacillary dysentery related to increased temperature in temperate and subtropical cities of China. J Environ Monit2012;14:510-6.

[38]Cheng J, Xie MY, Zhao KF, et al. Impacts of ambient temperature on the burden of bacillary dysentery in urban and rural Hefei, China. Epidemiol Infect2017;145:1567-76.

[39]Li C, Wu X, Ji D, et al. Climate change impacts the epidemic of dysentery: determining climate risk window, modeling and projection. Research Letters2019;14:104019.

[40]Liu Z, Tong MX, Xiang J, et al. Daily Temperature and Bacillary Dysentery: Estimated Effects, Attributable Risks, and Future Disease Burden in 316 Chinese Cities. Environ Health Perspect2020;128:57008.

[41]Philipsborn R, Ahmed SM, Brosi BJ, Levy K. Climatic Drivers of Diarrheagenic Escherichia coli Incidence: A Systematic Review and Meta-analysis. J Infect Dis2016;214:6-15.

[42]Riccò M, Peruzzi S, Ranzieri S, Giuri PG. Epidemiology of Legionnaires’ Disease in Italy, 2004-2019: A Summary of Available Evidence. Microorganisms2021;9:2180.

[43]Pampaka D, Gómez-Barroso D, López-Perea N, Carmona R, Portero RC. Meteorological conditions and Legionnaires’ disease sporadic cases-a systematic review. Environ Res2022;214:114080.

[44]Gleason JA, Kratz NR, Greeley RD, Fagliano JA. Under the Weather: Legionellosis and Meteorological Factors. Ecohealth2016;13:293-302.

[45]Chua PLC, Ng CFS, Tobias A, Seposo XT, Hashizume M. Associations between ambient temperature and enteric infections by pathogen: a systematic review and meta-analysis. Lancet Planet Health2022;6:e202-18.

[46]Brandsema PS, Euser SM, Karagiannis I, Den Boer JW, Van Der Hoek W. Summer increase of Legionnaires’ disease 2010 in The Netherlands associated with weather conditions and implications for source finding. Epidemiol Infect2014;142:2360-71.

[47]Fisman DN, Lim S, Wellenius GA, et al. It’s not the heat, it’s the humidity: wet weather increases legionellosis risk in the greater Philadelphia metropolitan area. J Infect Dis2005;192:2066-73.

[48]Simmering JE, Polgreen LA, Hornick DB, Sewell DK, Polgreen PM. Weather-Dependent Risk for Legionnaires’ Disease, United States. Emerg Infect Dis2017;23:1843-51.

[49]Carlton EJ, Woster AP, DeWitt P, Goldstein RS, Levy K. A systematic review and meta-analysis of ambient temperature and diarrhoeal diseases. Int J Epidemiol2016;45:117-30.

[50]Bhandari D, Bi P, Dhimal M, Sherchand JB, Hanson-Easey S. Non-linear effect of temperature variation on childhood rotavirus infection: A time series study from Kathmandu, Nepal. Sci Total Environ2020;748:141376.

[51]WHO. Rotavirus. 2024. https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/norms-and-standards/vaccines-quality/rotavirus.

[52]Ahmed SM, Lopman BA, Levy K. A systematic review and meta-analysis of the global seasonality of norovirus. PLoS One2013;8:e75922.

[53]Kim T-K, Paek J, Kim H-Y, Choi I. Relative Risk Prediction of Norovirus Incidence under Climate Change in Korea. Life (Basel)2021;11:1332.

[54]Lopman B, Armstrong B, Atchison C, Gray JJ. Host, weather and virological factors drive norovirus epidemiology: time-series analysis of laboratory surveillance data in England and Wales. PLoS One2009;4:e6671.

[55]Colston JM, Zaitchik BF, Badr HS, et al. Associations Between Eight Earth Observation-Derived Climate Variables and Enteropathogen Infection: An Independent Participant Data Meta-Analysis of Surveillance Studies With Broad Spectrum Nucleic Acid Diagnostics. Geohealth2022;6:GH000452.

[56]Colas de la Noue A, Estienney M, Aho S, et al. Absolute humidity influences the seasonal persistence and infectivity of human norovirus. Appl Environ Microbiol2014;80:7196-205.

[57]Elwakil R, Esmat G, Fouad Y, Bassam M. Impact of Climate Change on Viral Disease Burden in Africa. In: Saad-Hussein A, Elwakil R, Khomsi K, eds. Impact of Climate Change on Health in Africa. Springer, 2023:97-117

[58]Shamkhali Chenar S, Deng Z. Environmental indicators for human norovirus outbreaks. Int J Environ Health Res2017;27:40-51.

[59]Hao J, Yang Z, Yang W, et al. Impact of Ambient Temperature and Relative Humidity on the Incidence of Hand-Foot-Mouth Disease in Wuhan, China. Int J Environ Res Public Health2020;17:428.

[60]Qi H, Li Y, Zhang J, et al. Quantifying the risk of hand, foot, and mouth disease (HFMD) attributable to meteorological factors in East China: A time series modelling study. Sci Total Environ2020;728:138548.

[61]Yang X, Wang J, Zhang G, Yu Z. Short-Term Effects of Extreme Meteorological Factors on Hand, Foot, and Mouth Disease Infection During 2010-2017 in Jiangsu, China: A Distributed Lag Non-Linear Analysis. Geohealth2024;8:GH000942.

[62]Nguyen HX, Chu C, Tran QD, Rutherford S, Phung D. Temporal relationships between climate variables and hand-foot-mouth disease: a multi-province study in the Mekong Delta Region, Vietnam. Int J Biometeorol2020;64:389-96.

[63]Xin X, Hu X, Zhai L, et al. The effect of ambient temperature on hand, foot and mouth disease in Qingdao, China, 2014-2018. Int J Environ Health Res2023;33:1081-90.

[64]Liu Z, Meng Y, Xiang H, Lu Y, Liu S. Association of Short-Term Exposure to Meteorological Factors and Risk of Hand, Foot, and Mouth Disease: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health2020;17:8017.

[65]Liu Y, Feng Z, Song Y. The impacts of meteorological factors on the incidence of hand, foot, and mouth disease in China: An interactive perspective. Appl Geogr2023;160:103092.

[66]Gao Q, Liu Z, Xiang J, et al. Forecast and early warning of hand, foot, and mouth disease based on meteorological factors: Evidence from a multicity study of 11 meteorological geographical divisions in Mainland of China. Environ Res2021;192:110301.

[67]Pearson D, Basu R, Wu XM, Ebisu K. Temperature and hand, foot and mouth disease in California: An exploratory analysis of emergency department visits by season, 2005-2013. Environ Res2020;185:109461.

[68]World Health Organization. Integrated surveillance and climate-informed health early warning systems. 2024. https://www.who.int/teams/environment-climate-change-and-health/climate-change-and-health/country-support/integrated-surveillance-and-climate-informed-health-early-warning-systems.

[69]Semenza JC. Prototype early warning systems for vector-borne diseases in Europe. Int J Environ Res Public Health2015;12:6333-51.

[70]Bezirtzoglou C, Dekas K, Charvalos E. Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe. Anaerobe2011;17:337-40.

[71]Sanchez Tejeda G, Benitez Valladares D, Correa Morales F, et al. Early warning and response system for dengue outbreaks: Moving from research to operational implementation in Mexico. PLOS Glob Public Health2023;3:e0001691.

[72]Lee JS, Carabali M, Lim JK, et al. Early warning signal for dengue outbreaks and identification of high risk areas for dengue fever in Colombia using climate and non-climate datasets. BMC Infect Dis2017;17:480.

[73]Chersich MF, Wright CY. Climate change adaptation in South Africa: a case study on the role of the health sector. Global Health2019;15:22. . doi:10.1186/s12992-019-0466-x pmid:30890178

[74]Purcell R, McGirr J. Preparing rural general practitioners and health services for climate change and extreme weather. Aust J Rural Health2014;22:8-14. . doi:10.1111/ajr.12075 pmid:24460994CrossRefPubMedWeb of ScienceGoogle Scholar

[75]Sambath V, Narayan S, Kumar P, et al. Knowledge, attitudes and practices related to climate change and its health aspects among the healthcare workforce in India – A cross-sectional study. J Clim Change Health2022;6:100147.

[76]Tong MX, Hansen A, Hanson-Easey S, et al. Perceptions of capacity for infectious disease control and prevention to meet the challenges of dengue fever in the face of climate change: A survey among CDC staff in Guangdong Province, China. Environ Res2016;148:295-302.

[77]Godsmark CN, Irlam J, van der Merwe F, New M, Rother HA. Priority focus areas for a sub-national response to climate change and health: A South African provincial case study. Environ Int2019;122:31-51.

[78]Dhimal M, Dhimal ML, Pote-Shrestha RR, Groneberg DA, Kuch U. Health-sector responses to address the impacts of climate change in Nepal. WHO South East Asia J Public Health2017;6:9-14. 

[79]Linh Tran NQ, Cam Hong Le HT, Pham CT, et al. Climate change and human health in Vietnam: a systematic review and additional analyses on current impacts, future risk, and adaptation. Lancet Reg Health West Pac2023;40:100943.

[80]Mboera LE, Mayala BK, Kweka EJ, Mazigo HD. Impact of climate change on human health and health systems in Tanzania: a review. Tanzan J Health Res2011;13(Suppl 1):407-26.

[81]Vo MV, Ebi KL, Busch Isaksen TM, Hess JJ, Errett NA. Addressing Capacity Constraints of Rural Local Health Departments to Support Climate Change Adaptation: Action Is Needed Now. Int J Environ Res Public Health2022;19:13651.

推荐阅读

上海市第一妇婴保健院陈淼鑫团队与福建医科大学向建军团队:极端环境温度对人工辅助生殖的临床妊娠结局和活产的影响

暨南大学基础医学与公共卫生学院马文军教授团队:高温和干旱事件对传染病的影响研究进展

山东大学赵琦团队和德州市疾控中心崔永彪团队:以山东省德州市急诊呼救数据为例,探讨极端高温急性健康效应的季节内差异


环境健康ENRICH研究组
分享环境健康ENRICH研究组(ENvironmental Research on aIr, Climate, and Health)的研究动态和科研成果,欢迎各位同行、老师和同学订阅并批评指正。
 最新文章