译作分享
炎症:与压力有关的疾病的共同途径
While modernization has dramatically increased lifespan, it has also witnessed that the nature of stress has changed dramatically. Chronic stress result failures of homeostasis thus lead to various diseases such as atherosclerosis, non-alcoholic fatty liver disease (NAFLD) and depression. However, while 75%–90% of human diseases is related to the activation of stress system, the common pathways between stress exposure and pathophysiological processes underlying disease is still debatable. Chronic inflammation is an essential component of chronic diseases. Additionally, accumulating evidence suggested that excessive inflammation plays critical roles in the pathophysiology of the stress-related diseases, yet the basis for this connection is not fully understood. Here we discuss the role of inflammation in stress-induced diseases and suggest a common pathway for stress-related diseases that is based on chronic mild inflammation. This framework highlights the fundamental impact of inflammation mechanisms and provides a new perspective on the prevention and treatment of stress-related diseases.
Introduction/介绍
Inflammation and Diseases
炎症和疾病
Classically, inflammation is classically known as the crucial response to microbe invasion or tissue injury to keep maintenance of tissue homeostasis. In recent years, our knowledge of the inflammation role is greatly enlarged. Inflammatory pathway has been recognized as a pivotal molecular basis in the pathogenesis of many chronic diseases. By far, increasing literatures have shown that excessive inflammation play critical roles in the progression, and/or onset of stress-related diseases. There has been a growing number of evidence supporting that inflammatory response constitutes the “common soil” of the multifactorial diseases, including cardiovascular and metabolic diseases, psychotic neurodegenerative disorders and cancer (Scrivo et al., 2011).
Stress, Inflammation and Diseases
压力、炎症和疾病
Accumulating researches suggested that excessive inflammation plays critical roles in relationship between stress and stress-related diseases. Although stress and inflammation, or inflammation and diseases have been widely and nicely discussed, there are few literatures concerned of all these three factors (stress, inflammation and disease). In this part, we will discuss inflammation in different stress-related diseases and explore the inside mechanism (Table 1).
Table 1. Stress substance that link stress and various diseases.
表1
表1:将压力和各种疾病联系起来的压力性物质
Stress, Inflammation and CVD
压力、炎症和心血管疾病
心血管疾病被认为是在全世界范围内造成死亡的主要原因。大量的临床试验指出,慢性压力,无论是早期生活压力(Su et al., 2015)还是成年压力,长期以来都与冠心病(CHD)风险增加有关。 童年逆境特别是儿童时期严重的身体和性虐待与女性心血管事件的发病率较高密切相关(Rich-Edwards et al., 2012; Thurston et al., 2014)。在原有家庭中表达力和凝聚力较差的儿童表现出更多的心血管危险因素特征(Bleil et al., 2013)。那些经历过更多家庭破裂事件或早期生活家庭冲突的人具有更大的平均内膜-中层厚度(IMT),这是CVD风险的亚临床标志物(Bleil et al., 2013)。 在成年后,与工作相关的压力因素,如低收入,高工作需求,加上低控制度,轮班工作和工作场所冲突,大多与较高的CVD风险相关 (Bleil et al., 2013)。除此之外,在压力下睡眠质量差,歧视性情绪压力,如愤怒,敌意和攻击性也与冠状动脉疾病有关(Kop, 2003)。相比之下,有效的压力管理,包括积极的情绪,乐观和生活满意度被证实对CVD具有保护作用 (Bleil et al., 2013)。
虽然压力增加心血管疾病风险的生物学机制尚不清楚,但慢性低度炎症性负荷可能成为一种潜在关联,因为它既因慢性压力而升高,又促成了动脉粥样硬化的早期过程,进展和血栓并发症。IL-6和CRP是系统性炎症的两个重要生物标志物,被认为对动脉粥样硬化具有指示性和潜在预测性(Tsirpanlis, 2005; Nadrowski et al., 2016)。巧合的是,这两种炎症指标在不同类型的生活压力下会随之升高。例如,严重的童年虐待与急性应激诱导的IL-6反应的升高有关,可能是由于IL-6启动子的甲基化程度降低了 (Janusek et al., 2017)。据报道,具有更大童年逆境的成年人具有更多的抑郁症状和更高的CRP浓度 (Janusek et al., 2017)。最近的研究表明,CRP和IL-6是早期逆境可能导致CVD的机制(Ridker et al., 2002; Albert et al., 2006; Graham et al., 2006)。工作相关的压力因素也被提到与CRP和IL-6的升高相关 (von Känel et al., 2008)。 在最近应用于黑人和白人男性的研究中,更大的压力源诱发的高频心率变异性(HF-HRV)的减少与较高的CRP和IL-6相关联。在动物压力模型(社会孤立,社会混乱,寒冷压力,严重的慢性不可预测的压力)中,观察到斑块大小增加,血清IL-6升高,NPY水平升高。然而,当肾上腺切除术后单一供应GC时,斑块大小和血清炎症因子减少或没有改变。这表明心血管疾病中与压力相关的炎症的机制,可能包括SNS介导的NE和NPY的增加。嘈杂的社区作为生活压力源会诱发尿液中肾上腺素和NE显着增加,导致高血压 (Seidman and Standring, 2010)。NE通过激活NE α受体促进MAPKs的磷酸化来促进炎症因子的产生(Huang et al., 2012)。NPY可以通过Y1受体在巨噬细胞样细胞系RAW264.7中激发TGF-β1和TNFα的产生(von Känel et al., 2008)。NPY还可以直接激活巨噬细胞的HMGB1释放和细胞质转移 (Zhou et al., 2013)。炎症也被证实与内皮功能障碍相关,并与肾素 - 血管紧张素系统有关 (Li et al., 2013)。
Overall, the possible mechanism could be summarized as follows. Stress may activate through SNS system to release NE and NPY, these two stress hormones further facilitate the phosphorylation of MAPKs or HMGB1 release, therefore inducing systematic inflammation (IL-6, CRP) to promote or accelerate CVD development. Anti-inflammatory drugs may have synergistic effect with conventional antihypertensive drugs on the prevention and treatment of stress-related CVD.
Stress, Inflammation and
Metabolic Disease
压力、炎症和代谢性疾病
Stressful events could motivate unhealthy food choices (Kuo et al., 2008). These unhealthy foods are frequently associated with morbid obesity, type 2 diabetes mellitus, metabolic syndrome and NAFLD (Mikolajczyk et al., 2009). Stress enhances both post-meal peaks of triglycerides and delays lipids clearance (Kiecolt-Glaser, 2010). As shown in Hoorn’s study, stressful life events, which indicate chronic psychological stress, are associated with higher prevalence of undetected type 2 diabetes (Mooy et al., 2000). A recent prospective study supported this view, and provided further evidence (Cosgrove et al., 2012). Furthermore, effective stress management training or mindfulness-based stress reduction training has been proved to have clinically significant benefits on patients with type 2 diabetes. On the contrary, highly anxious patients did not obtain more improvement from the training (Rosenzweig et al., 2007).
压力事件可能会促使人们选择不健康的食物(Kuo et al., 2008)。通常病态肥胖、2型糖尿病、代谢综合征及非酒精性脂肪肝都与这些不健康的食物相关(Mikolajczyk et al., 2009)。压力会增强餐后甘油三酯的峰值并延缓脂质清除 (Kiecolt-Glaser, 2010)。正如Hoorn的研究所示,未被发现的2型糖尿病的较高患病率与生活中的压力事件造成的长期心理压力有关(Mooy et al., 2000)。最近的一项前瞻性研究支持了这一观点,并提供了进一步的证据(Cosgrove et al., 2012)。此外,在临床上,有效的压力管理训练或基于正念的减压训练已被证实对2型糖尿病患者具有显著益处。相反,高度焦虑的患者没有从训练中获得更多的改善 (Rosenzweig et al., 2007)。
控制代谢的应激激素,特别是GCs和NE可以发挥抗胰岛素的作用,从长远来看会诱发胰岛素抵抗。GC受体拮抗剂RU486和肾上腺切除术可减少胰岛素抵抗的发生。血浆中高浓度的NE可以提高空腹血糖并降低葡萄糖耐量,可能是由脂肪分解和脂肪酸浓度的增加所介导的 (Marangou et al., 1988)。肾上腺素受体的激活可能直接影响胰岛素信号通路或细胞葡萄糖转运(Mulder et al., 2005)。此外,GCs和NE也可以调节炎症。在糖尿病中,促炎症细胞因子的循环水平升高最初被认为是脂肪细胞本身对肥胖的反应。然而,越来越多的证据表明,肥胖会导致巨噬细胞数量的增加及其活化状态的变化。因此,脂肪组织巨噬细胞产生了相当一部分因肥胖而上调的炎症因子(Donath and Shoelson, 2011)。由各种细胞产生的炎症细胞因子,如Kupffer细胞,巨噬细胞,中性粒细胞,单核细胞,脂肪细胞和肝脏细胞,在促进肝损伤的脂质代谢和肝脏炎症中起着关键作用。拮抗或抑制TNFα,显着改善非酒精性脂肪肝,目前正在慢性肝炎人群中进行人体测试 (Gastaldelli et al., 2009; Musso et al., 2009)。此外,TNFR1外域脱落可以减弱从“单纯脂肪变性”向慢性肝炎的进展 (Aparicio-Vergara et al., 2013)。
未完待续
参考文献
滑动查看参考文献:
Albert M. A., Glynn R. J., Buring J., Ridker P. M. (2006). Impact of traditional and novel risk factors on the relationship between socioeconomic status and incident cardiovascular events. Circulation 114, 2619–2626. 10.1161/circulationaha.106.660043
Alley D. E., Seeman T. E., Ki Kim J., Karlamangla A., Hu P., Crimmins E. M. (2006). Socioeconomic status and C-reactive protein levels in the US population: NHANES IV. Brain Behav. Immun. 20, 498–504. 10.1016/j.bbi.2005.10.003
Angelo L. S., Talpaz M., Kurzrock R. (2002). Autocrine interleukin-6 production in renal cell carcinoma: evidence for the involvement of p53. Cancer Res. 62, 932–940.
Aparicio-Vergara M., Hommelberg P. P. H., Schreurs M., Gruben N., Stienstra R., Shiri-Sverdlov R., et al.. (2013). Tumor necrosis factor receptor 1 gain-of-function mutation aggravates nonalcoholic fatty liver disease but does not cause insulin resistance in a murine model. Hepatology 57, 566–576. 10.1002/hep.26046
Barbieri A., Bimonte S., Palma G., Luciano A., Rea D., Giudice A., et al.. (2015). The stress hormone norepinephrine increases migration of prostate cancer cells in vitro and in vivo. Int. J. Oncol. 47, 527–534. 10.3892/ijo.2015.3038
Bellinger D. L., Millar B. A., Perez S., Carter J., Wood C., ThyagaRajan S., et al.. (2008). Sympathetic modulation of immunity: relevance to disease. Cell. Immunol. 252, 27–56. 10.1016/j.cellimm.2007.09.005
Bencherif M., Lippiello P. M., Lucas R., Marrero M. B. (2011). α7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases. Cell. Mol. Life Sci. 68, 931–949. 10.1007/s00018-010-0525-1
Bleil M. E., Adler N. E., Appelhans B. M., Gregorich S. E., Sternfeld B., Cedars M. I. (2013). Childhood adversity and pubertal timing: understanding the origins of adulthood cardiovascular risk. Biol. Psychol. 93, 213–219. 10.1016/j.biopsycho.2013.02.005
Brenner D. R., Fanidi A., Grankvist K., Muller D. C., Brennan P., Manjer J., et al.. (2017). Inflammatory cytokines and lung cancer risk in 3 prospective studies. Am. J. Epidemiol. 185, 86–95. 10.1093/aje/kww159
Busillo J. M., Azzam K. M., Cidlowski J. A. (2011). Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. J. Biol. Chem. 286, 38703–38713. 10.1074/jbc.M111.275370
Calcia M. A., Bonsall D. R., Bloomfield P. S., Selvaraj S., Barichello T., Howes O. D. (2016). Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology (Berl) 233, 1637–1650. 10.1007/s00213-016-4218-9
Capuron L., Raison C. L., Musselman D. L., Lawson D. H., Nemeroff C. B., Miller A. H. (2003). Association of exaggerated HPA axis response to the initial injection of interferon-α with development of depression during interferon-α therapy. Am. J. Psychiatry 160, 1342–1345. 10.1176/appi.ajp.160.7.1342
Chen C.-H., Zhou W., Liu S., Deng Y., Cai F., Tone M., et al.. (2012). Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int. J. Neuropsychopharmacol. 15, 77–90. 10.1017/S1461145711000149
Chung Y.-C., Chang Y.-F. (2003). Serum interleukin-6 levels reflect the disease status of colorectal cancer. J. Surg. Oncol. 83, 222–226. 10.1002/jso.10269
Cohen S., Janicki-Deverts D., Miller G. E. (2007). Psychological stress and disease. JAMA 298, 1685–1687. 10.1001/jama.298.14.1685
Comi C., Carecchio M., Chiocchetti A., Nicola S., Galimberti D., Fenoglio C., et al.. (2010). Osteopontin is increased in the cerebrospinal fluid of patients with Alzheimer’s disease and its levels correlate with cognitive decline. J. Alzheimers Dis. 19, 1143–1148. 10.3233/JAD-2010-1309
Cosgrove M. P., Sargeant L. A., Caleyachetty R., Griffin S. J. (2012). Work-related stress and Type 2 diabetes: systematic review and meta-analysis. Occup. Med. (Lond) 62, 167–173. 10.1093/occmed/kqs002
Danese A., Pariante C. M., Caspi A., Taylor A., Poulton R. (2007). Childhood maltreatment predicts adult inflammation in a life-course study. Proc. Natl. Acad. Sci. U S A 104, 1319–1324. 10.1073/pnas.0610362104
Day C. P. (2006). Non-alcoholic fatty liver disease: current concepts and management strategies. Clin. Med. 6, 19–25. 10.7861/clinmedicine.6-1-19
Donath M. Y., Shoelson S. E. (2011). Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107. 10.1038/nri2925
Dowlati Y., Herrmann N., Swardfager W., Liu H., Sham L., Reim E. K., et al.. (2010). A meta-analysis of cytokines in major depression. Biol. Psychiatry 67, 446–457. 10.1016/j.biopsych.2009.09.033
Elenkov I. J. (2008). Neurohormonal-cytokine interactions: implications for inflammation, common human diseases and well-being. Neurochem. Int. 52, 40–51. 10.1016/j.neuint.2007.06.037
Gao S. P., Mark K. G., Leslie K., Pao W., Motoi N., Gerald W. L., et al.. (2007). Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J. Clin. Invest. 117, 3846–3856. 10.1172/jci31871
García-Bueno B., Caso J. R., Leza J. C. (2008). Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci. Biobehav. Rev. 32, 1136–1151. 10.1016/j.neubiorev.2008.04.001
Gastaldelli A., Harrison S. A., Belfort-Aguilar R., Hardies L. J., Balas B., Schenker S., et al.. (2009). Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis. Hepatology 50, 1087–1093. 10.1002/hep.23116
Gentile C. L., Nivala A. M., Gonzales J. C., Pfaffenbach K. T., Wang D., Wei Y., et al.. (2011). Experimental evidence for therapeutic potential of taurine in the treatment of nonalcoholic fatty liver disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1710–R1722. 10.1152/ajpregu.00677.2010
Graham J. E., Christian L. M., Kiecolt-Glaser J. K. (2006). Stress, age, and immune function: toward a lifespan approach. J. Behav. Med. 29, 389–400. 10.1007/s10865-006-9057-4
Grimaldi L. M., Casadei V. M., Ferri C., Veglia F., Licastro F., Annoni G., et al.. (2000). Association of early-onset Alzheimer’s disease with an interleukin-1α gene polymorphism. Ann. Neurol. 47, 361–365. 10.1002/1531-8249(200003)47:3<361::AID-ANA12>3.0.CO;2-N
Grivennikov S., Karin E., Terzic J., Mucida D., Yu G.-Y., Vallabhapurapu S., et al.. (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113. 10.1016/j.ccr.2009.01.001
Heikkilä K., Ebrahim S., Lawlor D. A. (2008). Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur. J. Cancer 44, 937–945. 10.1016/j.ejca.2008.02.047
Henry C. J., Huang Y., Wynne A., Hanke M., Himler J., Bailey M. T., et al.. (2008). Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J. Neuroinflammation 5:15. 10.1186/1742-2094-5-15
Hirano T., Ishihara K., Hibi M. (2000). Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19, 2548–2556. 10.1038/sj.onc.1203551
Hoshino T., Namba T., Takehara M., Nakaya T., Sugimoto Y., Araki W., et al.. (2009). Prostaglandin E2 stimulates the production of amyloid-β peptides through internalization of the EP4 receptor. J. Biol. Chem. 284, 18493–18502. 10.1074/jbc.M109.003269
Huang J.-L., Zhang Y.-L., Wang C.-C., Zhou J.-R., Ma Q., Wang X., et al.. (2012). Enhanced phosphorylation of MAPKs by NE promotes TNF-α production by macrophage through α adrenergic receptor. Inflammation 35, 527–534. 10.1007/s10753-011-9342-4
Janusek L. W., Tell D., Gaylord-Harden N., Mathews H. L. (2017). Relationship of childhood adversity and neighborhood violence to a proinflammatory phenotype in emerging adult African American men: an epigenetic link. Brain Behav. Immun. 60, 126–135. 10.1016/j.bbi.2016.10.006
Jiang C. L., Lu C. L., Liu X. Y. (1998). The molecular basis for bidirectional communication between the immune and neuroendocrine systems. Domest. Anim. Endocrinol. 15, 363–369. 10.1016/s0739-7240(98)00026-5
Johnson M. (2006). Molecular mechanisms of β2-adrenergic receptor function, response, and regulation. J. Allergy Clin. Immunol. 117, 18–24; quiz 25. 10.1016/j.jaci.2005.11.012
Johnson J. D., Campisi J., Sharkey C. M., Kennedy S. L., Nickerson M., Greenwood B. N., et al.. (2005). Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience 135, 1295–1307. 10.1016/j.neuroscience.2005.06.090
Kamari Y., Shaish A., Vax E., Shemesh S., Kandel-Kfir M., Arbel Y., et al.. (2011). Lack of interleukin-1α or interleukin-1β inhibits transformation of steatosis to steatohepatitis and liver fibrosis in hypercholesterolemic mice. J. Hepatol. 55, 1086–1094. 10.1016/j.jhep.2011.01.048
Kerr L. R., Wilkinson D. A., Emerman J. T., Weinberg J. (1999). Interactive effects of psychosocial stressors and gender on mouse mammary tumor growth. Physiol. Behav. 66, 277–284. 10.1016/s0031-9384(98)00296-0
Kiecolt-Glaser J. K. (2010). Stress, food, and inflammation: psychoneuroimmunology and nutrition at the cutting edge. Psychosom. Med. 72, 365–369. 10.1097/PSY.0b013e3181dbf489
Kim-Fuchs C., Le C. P., Pimentel M. A., Shackleford D., Ferrari D., Angst E., et al.. (2014). Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for β-adrenergic signaling in the pancreatic microenvironment. Brain Behav. Immun. 40, 40–47. 10.1016/j.bbi.2014.02.019
Kim T.-H., Gill N. K., Nyberg K. D., Nguyen A. V., Hohlbauch S. V., Geisse N. A., et al.. (2016). Cancer cells become less deformable and more invasive with activation of β-adrenergic signaling. J. Cell Sci. 129, 4563–4575. 10.1242/jcs.194803
Kolmus K., Tavernier J., Gerlo S. (2015). β2-Adrenergic receptors in immunity and inflammation: stressing NF-κB. Brain Behav. Immun. 45, 297–310. 10.1016/j.bbi.2014.10.007
Kop W. J. (2003). The integration of cardiovascular behavioral medicine and psychoneuroimmunology: new developments based on converging research fields. Brain Behav. Immun. 17, 233–237. 10.1016/s0889-1591(03)00051-5
Krizanova O., Babula P., Pacak K. (2016). Stress, catecholaminergic system and cancer. Stress 19, 419–428. 10.1080/10253890.2016.1203415
Kunjathoor V. V., Tseng A. A., Medeiros L. A., Khan T., Moore K. J. (2004). β-Amyloid promotes accumulation of lipid peroxides by inhibiting CD36-mediated clearance of oxidized lipoproteins. J. Neuroinflammation 1:23. 10.1186/1742-2094-1-23
Kuo L. E., Czarnecka M., Kitlinska J. B., Tilan J. U., Kvetnanský R., Zukowska Z. (2008). Chronic stress, combined with a high-fat/high-sugar diet, shifts sympathetic signaling toward neuropeptide Y and leads to obesity and the metabolic syndrome. Ann. N Y Acad. Sci. 1148, 232–237. 10.1196/annals.1410.035
Lamkin D. M., Sloan E. K., Patel A. J., Chiang B. S., Pimentel M. A., Ma J. C. Y., et al.. (2012). Chronic stress enhances progression of acute lymphoblastic leukemia via β-adrenergic signaling. Brain Behav. Immun. 26, 635–641. 10.1016/j.bbi.2012.01.013
Lamkin D. M., Sung H. Y., Yang G. S., David J. M., Ma J. C. Y., Cole S. W., et al.. (2015). α2-Adrenergic blockade mimics the enhancing effect of chronic stress on breast cancer progression. Psychoneuroendocrinology 51, 262–270. 10.1016/j.psyneuen.2014.10.004
Landsbergis P. A. (2003). The changing organization of work and the safety and health of working people: a commentary. J. Occup. Environ. Med. 45, 61–72. 10.1097/00043764-200301000-00014
Li G., Xu Y., Ling F., Liu A., Wang D., Wang Q., et al.. (2012). Angiotensin-converting enzyme 2 activation protects against pulmonary arterial hypertension through improving early endothelial function and mediating cytokines levels. Chin. Med. J. 125, 1381–1388.
Lin Y., Yang X., Liu W., Li B., Yin W., Shi Y., et al.. (2017). Chemerin has a protective role in hepatocellular carcinoma by inhibiting the expression of IL-6 and GM-CSF and MDSC accumulation. Oncogene [Epub ahead of print]. 10.1038/onc.2016.516
Lippitz B. E. (2013). Cytokine patterns in patients with cancer: a systematic review. Lancet. Oncol. 14, e218–e228. 10.1016/S1470-2045(12)70582-X
Liu Y., Qiu D. K., Ma X. (2012). Liver X receptors bridge hepatic lipid metabolism and inflammation. J. Dig. Dis. 13, 69–74. 10.1111/j.1751-2980.2011.00554.x
Ma K. L., Ruan X. Z., Powis S. H., Chen Y., Moorhead J. F., Varghese Z. (2008). Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice. Hepatology 48, 770–781. 10.1002/hep.22423
Mace T. A., Shakya R., Pitarresi J. R., Swanson B., McQuinn C. W., Loftus S., et al.. (2016). IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut [Epub ahead of print]. 10.1136/gutjnl-2016-311585
Mantyh P. W., Rogers S. D., Allen C. J., Catton M. D., Ghilardi J. R., Levin L. A., et al.. (1995). β 2-adrenergic receptors are expressed by glia in vivo in the normal and injured central nervous system in the rat, rabbit and human. J. Neurosci. 15, 152–164.
Marangou A. G., Alford F. P., Ward G., Liskaser F., Aitken P. M., Weber K. M., et al.. (1988). Hormonal effects of norepinephrine on acute glucose disposal in humans: a minimal model analysis. Metab. Clin. Exp. 37, 885–891. 10.1016/0026-0495(88)90124-2
Mikolajczyk R. T., El Ansari W., Maxwell A. E. (2009). Food consumption frequency and perceived stress and depressive symptoms among students in three European countries. Nutr. J. 8:31. 10.1186/1475-2891-8-31
Miller G. E., Chen E., Sze J., Marin T., Arevalo J. M. G., Doll R., et al.. (2008). A functional genomic fingerprint of chronic stress in humans: blunted glucocorticoid and increased NF-κB signaling. Biol. Psychiatry 64, 266–272. 10.1016/j.biopsych.2008.03.017
Miller A. H., Maletic V., Raison C. L. (2009). Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol. Psychiatry 65, 732–741. 10.1016/j.biopsych.2008.11.029
Miura H., Ozaki N., Sawada M., Isobe K., Ohta T., Nagatsu T. (2008). A link between stress and depression: shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress 11, 198–209. 10.1080/10253890701754068
Mooy J. M., de Vries H., Grootenhuis P. A., Bouter L. M., Heine R. J. (2000). Major stressful life events in relation to prevalence of undetected type 2 diabetes: the Hoorn Study. Diabetes Care 23, 197–201. 10.2337/diacare.23.2.197
Morand E. F., Leech M. (1999). Glucocorticoid regulation of inflammation: the plot thickens. Inflamm. Res. 48, 557–560. 10.1007/s000110050503
Mulder A. H., Tack C. J., Olthaar A. J., Smits P., Sweep F. C. G. J., Bosch R. R. (2005). Adrenergic receptor stimulation attenuates insulin-stimulated glucose uptake in 3T3–L1 adipocytes by inhibiting GLUT4 translocation. Am. J. Physiol. Endocrinol. Metab. 289, E627–E633. 10.1152/ajpendo.00079.2004
Munhoz C. D., García-Bueno B., Madrigal J. L. M., Lepsch L. B., Scavone C., Leza J. C. (2008). Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Braz. J. Med. Biol. Res. 41, 1037–1046. 10.1590/s0100-879x2008001200001
Musso G., Gambino R., Pacini G., De Michieli F., Cassader M. (2009). Prolonged saturated fat-induced, glucose-dependent insulinotropic polypeptide elevation is associated with adipokine imbalance and liver injury in nonalcoholic steatohepatitis: dysregulated enteroadipocyte axis as a novel feature of fatty liver. Am. J. Clin. Nutr. 89, 558–567. 10.3945/ajcn.2008.26720
Nadrowski P., Chudek J., Skrzypek M., Puzianowska-Kuźnicka M., Mossakowska M., Wiecek A., et al.. (2016). Associations between cardiovascular disease risk factors and IL-6 and hsCRP levels in the elderly. Exp. Gerontol. 85, 112–117. 10.1016/j.exger.2016.10.001
Nagatsu T., Sawada M. (2005). Inflammatory process in Parkinson’s disease: role for cytokines. Curr. Pharm. Des. 11, 999–1016. 10.2174/1381612053381620
Nicoll J. A., Mrak R. E., Graham D. I., Stewart J., Wilcock G., MacGowan S., et al.. (2000). Association of interleukin-1 gene polymorphisms with Alzheimer’s disease. Ann. Neurol. 47, 365–368. 10.1002/1531-8249(200003)47:3<365::AID-ANA13>3.3.CO;2-7
Norman G. J., Karelina K., Zhang N., Walton J. C., Morris J. S., Devries A. C. (2010). Stress and IL-1β contribute to the development of depressive-like behavior following peripheral nerve injury. Mol. Psychiatry 15, 404–414. 10.1038/mp.2009.91
Padro C. J., Sanders V. M. (2014). Neuroendocrine regulation of inflammation. Semin. Immunol. 26, 357–368. 10.1016/j.smim.2014.01.003
Park H. J., Lee P. H., Ahn Y. W., Choi Y. J., Lee G., Lee D.-Y., et al.. (2007). Neuroprotective effect of nicotine on dopaminergic neurons by anti-inflammatory action. Eur. J. Neurosci. 26, 79–89. 10.1111/j.1460-9568.2007.05636.x
Peng Y.-L., Liu Y.-N., Liu L., Wang X., Jiang C.-L., Wang Y.-X. (2012). Inducible nitric oxide synthase is involved in the modulation of depressive behaviors induced by unpredictable chronic mild stress. J. Neuroinflammation 9:75. 10.1186/1742-2094-9-75
Perez Nievas B. G., Hammerschmidt T., Kummer M. P., Terwel D., Leza J. C., Heneka M. T. (2011). Restraint stress increases neuroinflammation independently of amyloid β levels in amyloid precursor protein/PS1 transgenic mice. J. Neurochem. 116, 43–52. 10.1111/j.1471-4159.2010.07083.x
Pérez-Nievas B. G., García-Bueno B., Caso J. R., Menchén L., Leza J. C. (2007). Corticosterone as a marker of susceptibility to oxidative/nitrosative cerebral damage after stress exposure in rats. Psychoneuroendocrinology 32, 703–711. 10.1016/j.psyneuen.2007.04.011
Perry V. H., Cunningham C., Holmes C. (2007). Systemic infections and inflammation affect chronic neurodegeneration. Nat. Rev. Immunol. 7, 161–167. 10.1038/nri2015
Pierce B. L., Ballard-Barbash R., Bernstein L., Baumgartner R. N., Neuhouser M. L., Wener M. H., et al.. (2009). Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J. Clin. Oncol. 27, 3437–3444. 10.1200/JCO.2008.18.9068
Qin J., Jin F., Li N., Guan H., Lan L., Ni H., et al.. (2015). Adrenergic receptor β2 activation by stress promotes breast cancer progression through macrophages M2 polarization in tumor microenvironment. BMB Rep. 48, 295–300. 10.5483/bmbrep.2015.48.5.008
Quan N., Banks W. A. (2007). Brain-immune communication pathways. Brain Behav. Immun. 21, 727–735. 10.1016/j.bbi.2007.05.005
Raison C. L., Borisov A. S., Woolwine B. J., Massung B., Vogt G., Miller A. H. (2010). Interferon-α effects on diurnal hypothalamic–pituitary–adrenal axis activity: relationship with proinflammatory cytokines and behavior. Mol. Psychiatry 15, 535–547. 10.1038/mp.2008.58
Rich-Edwards J. W., Mason S., Rexrode K., Spiegelman D., Hibert E., Kawachi I., et al.. (2012). Physical and sexual abuse in childhood as predictors of early-onset cardiovascular events in women. Circulation 126, 920–927. 10.1161/CIRCULATIONAHA.111.076877
Ridker P. M., Rifai N., Rose L., Buring J. E., Cook N. R. (2002). Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N. Engl. J. Med. 347, 1557–1565. 10.1056/nejmoa021993
Rohleder N. (2014). Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom. Med. 76, 181–189. 10.1097/PSY.0000000000000049
Rose-John S. (2012). IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 8, 1237–1247. 10.7150/ijbs.4989
Rosenzweig S., Reibel D. K., Greeson J. M., Edman J. S., Jasser S. A., McMearty K. D., et al.. (2007). Mindfulness-based stress reduction is associated with improved glycemic control in type 2 diabetes mellitus: a pilot study. Altern. Ther. Health Med. 13, 36–38.
Salgado R., Junius S., Benoy I., Van Dam P., Vermeulen P., Van Marck E., et al.. (2003). Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int. J. Cancer 103, 642–646. 10.1002/ijc.10833
Schroder K., Tschopp J. (2010). The inflammasomes. Cell 140, 821–832. 10.1016/j.cell.2010.01.040
Scrivo R., Vasile M., Bartosiewicz I., Valesini G. (2011). Inflammation as “common soil” of the multifactorial diseases. Autoimmun. Rev. 10, 369–374. 10.1016/j.autrev.2010.12.006
Seidman M. D., Standring R. T. (2010). Noise and quality of life. Int. J. Environ. Res. Public Health 7, 3730–3738. 10.3390/ijerph7103730
Smith R. S. (1991). The macrophage theory of depression. Med. Hypotheses 35, 298–306. 10.1016/0306-9877(91)90266-2
Sorrells S. F., Caso J. R., Munhoz C. D., Sapolsky R. M. (2009). The stressed CNS: when glucocorticoids aggravate inflammation. Neuron 64, 33–39. 10.1016/j.neuron.2009.09.032
Steptoe A., Hamer M., Chida Y. (2007). The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav. Immun. 21, 901–912. 10.1016/j.bbi.2007.03.011
Sterling P., Eyer J. (1988). “Allostasis: a new paradigm to explain arousal pathology,” in Handbook of Life Stress, Cognition and Health, eds Fisher S., Reason J. (Oxford: John Wiley & Sons; ), 629–649.
Su S., Jimenez M. P., Roberts C. T. F., Loucks E. B. (2015). The role of adverse childhood experiences in cardiovascular disease risk: a review with emphasis on plausible mechanisms. Curr. Cardiol. Rep. 17:88. 10.1007/s11886-015-0645-1
Szczepanska-Sadowska E., Cudnoch-Jedrzejewska A., Ufnal M., Zera T. (2010). Brain and cardiovascular diseases: common neurogenic background of cardiovascular, metabolic and inflammatory diseases. J. Physiol. Pharmacol. 61, 509–521.
Tack C. J., Stienstra R., Joosten L. A. B., Netea M. G. (2012). Inflammation links excess fat to insulin resistance: the role of the interleukin-1 family. Immunol. Rev. 249, 239–252. 10.1111/j.1600-065X.2012.01145.x
Thaker P. H., Han L. Y., Kamat A. A., Arevalo J. M., Takahashi R., Lu C., et al.. (2006). Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat. Med. 12, 939–944. 10.1038/nm1447
Theron A. J., Steel H. C., Tintinger G. R., Feldman C., Anderson R. (2013). Can the anti-inflammatory activities of β2-agonists be harnessed in the clinical setting? Drug Des. Devel. Ther. 7, 1387–1398. 10.2147/DDDT.S50995
Thiem S., Pierce T. P., Palmieri M., Putoczki T. L., Buchert M., Preaudet A., et al.. (2013). mTORC1 inhibition restricts inflammation-associated gastrointestinal tumorigenesis in mice. J. Clin. Invest. 123, 767–781. 10.1172/JCI65086
Thurston R. C., Chang Y., Derby C. A., Bromberger J. T., Harlow S. D., Janssen I., et al.. (2014). Abuse and subclinical cardiovascular disease among midlife women: the study of women’s health across the nation. Stroke 45, 2246–2251. 10.1161/STROKEAHA.114.005928
Tilg H., Moschen A. R. (2011). IL-1 cytokine family members and NAFLD: neglected in metabolic liver inflammation. J. Hepatol. 55, 960–962. 10.1016/j.jhep.2011.04.007
Tsirpanlis G. (2005). Inflammation in atherosclerosis and other conditions: a response to danger. Kidney Blood Press. Res. 28, 211–217. 10.1159/000087121
Tsukuda K., Mogi M., Iwanami J., Min L.-J., Sakata A., Jing F., et al.. (2009). Cognitive deficit in amyloid-β-injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-γ activation. Hypertension 54, 782–787. 10.1161/HYPERTENSIONAHA.109.136879
Tsuneki H., Tokai E., Sugawara C., Wada T., Sakurai T., Sasaoka T. (2013). Hypothalamic orexin prevents hepatic insulin resistance induced by social defeat stress in mice. Neuropeptides 47, 213–219. 10.1016/j.npep.2013.02.002
von Känel R., Bellingrath S., Kudielka B. M. (2008). Association between burnout and circulating levels of pro- and anti-inflammatory cytokines in schoolteachers. J. Psychosom. Res. 65, 51–59. 10.1016/j.jpsychores.2008.02.007
Weber M. D., Frank M. G., Tracey K. J., Watkins L. R., Maier S. F. (2015). Stress induces the danger-associated molecular pattern HMGB-1 in the hippocampus of male Sprague Dawley rats: a priming stimulus of microglia and the NLRP3 inflammasome. J. Neurosci. 35, 316–324. 10.1523/JNEUROSCI.3561-14.2015
Wellen K. E., Hotamisligil G. S. (2005). Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111–1119. 10.1172/jci25102
Wohleb E. S., Delpech J.-C. (2016). Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Prog. Neuropsychopharmacol. Biol. Psychiatry [Epub ahead of print]. 10.1016/j.pnpbp.2016.04.013
Wong M.-L., Inserra A., Lewis M. D., Mastronardi C. A., Leong L., Choo J., et al.. (2016). Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol. Psychiatry 21, 797–805. 10.1038/mp.2016.46
Wyss-Coray T. (2006). Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat. Med. 12, 1005–1015. 10.1038/nm1484
Zhang Y., Liu L., Peng Y.-L., Liu Y.-Z., Wu T.-Y., Shen X.-L., et al.. (2014). Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors. CNS Neurosci. Ther. 20, 119–124. 10.1111/cns.12170
Zhao L., Xu J., Liang F., Li A., Zhang Y., Sun J. (2015). Effect of chronic psychological stress on liver metastasis of colon cancer in mice. PLoS One 10:e0139978. 10.1371/journal.pone.0139978
Zhou J.-R., Xu Z., Jiang C.-L. (2008). Neuropeptide Y promotes TGF-β1 production in RAW264.7 cells by activating PI3K pathway via Y1 receptor. Neurosci. Bull. 24, 155–159. 10.1007/s12264-008-0130-6
Zhou J.-R., Zhang L.-D., Wei H.-F., Wang X., Ni H.-L., Yang F., et al.. (2013). Neuropeptide Y induces secretion of high-mobility group box 1 protein in mouse macrophage via PKC/ERK dependent pathway. J. Neuroimmunol. 260, 55–59. 10.1016/j.jneuroim.2013.04.005
Zhu C.-B., Blakely R. D., Hewlett W. A. (2006). The proinflammatory cytokines interleukin-1β and tumor necrosis factor-α activate serotonin transporters. Neuropsychopharmacology 31, 2121–2131. 10.1038/sj.npp.1301029
THE END
感|谢|关|注
郑重声明
关注Functional MediC服务号,及时获得课程上线通知及最新直播预告!