1 河南农业大学/省部共建小麦玉米作物学国家重点实验室/神农种业实验室,河南郑州 450002
2 河南省豫玉种业有限公司,河南郑州 450001
摘要 Abstract
玉米是世界上重要的粮食和饲料作物之一[1],从2012年开始,我国玉米产量首次超过水稻,成为第一大粮食作物[2],至2021年我国玉米产量达到了2.73亿吨,占小麦玉米水稻三大谷物总产的44.03%,在保证国家粮食安全中发挥着不可替代的作用。尽管我国玉米产量逐年增加,但是随着畜牧业和加工业的不断发展,玉米供需矛盾逐渐加大,进口量居高不下,对提高我国玉米产能提出了更高要求。在我国玉米生产的不同阶段,每一次品种的更新换代对产量提高均具有巨大的促进作用[3-4]。在我国玉米产区中,黄淮海夏玉米区是具有全球唯一的冬小麦-夏玉米周年两熟耕作模式,常年播种面积维持在1500万公顷左右,该地区生产条件特殊,除对玉米品种的产量和生育期等性状具有严格的要求外,对品种的综合抗性和适应性提出了更高的要求[5-6]。本文根据黄淮海地区的生态环境和气候特征,分析了本地区玉米生产状况和存在问题,提出黄淮海地区的育种目标与育种策略,以期能为培育适应本地区特殊生态环境和生产需求的优良玉米新品种提供指导,进而提升黄淮海地区玉米生产的整体水平。
1 黄淮海夏玉米区生产现状与存在问题
黄淮海区域属于暖温带半湿润气候类型,玉米生长季节温度高,降水过度集中,局部强对流天气频发,旱灾、涝灾、阴雨寡照和风灾等自然灾害时有发生[9],例如,2013年和2014年黄淮海局部地区的高温干旱,2021年台风“烟花”带来的暴雨,以及2022年大范围的高温等逆境气候均给玉米生产造成了极大的影响。特别是近年来频繁发生的异常高温天气常致使玉米雌穗发育异常、花药外漏开裂困难、花粉活力下降,导致玉米大幅度减产。据推测世界平均气温每升高1℃,玉米的产量将降低7.4%左右[10],而近年来玉米生长季节极端高温天气已经常态化,以河南省郑州地区为例,2013—2022年10年间超过35℃的高温天气越来越多(表1),给玉米生产造成了严重的影响。
1.3 土地经营呈现规模化
1.4 玉米生产全程机械化,促使种植密度逐年提升
1.5 玉米品种数量多,同质化严重
1.6 品种面积碎片化,缺乏易机收更新换代的主导品种
随着我国品种审定制度的改革,联合体和绿色通道等品种试验程序的开通,再加上临近省份的引种渠道,我国玉米品种审定的数量进入了爆发期,一个地区同时推广上千个品种的局面非常普遍,不但给农民选种用种带来一定的难度,而且导致品种推广呈现碎片化状态,很难出现更新换代的主导品种。据全国农技推广服务中心的统计数据2022年在我国玉米生产上推广的品种接近5000个,只有5个玉米品种的推广面积超过了66.67万公顷,71个品种推广面积为6.67~33.33万公顷,870个品种的推广面积介于0.67万公顷与6.67万公顷之间。
2 黄淮海夏玉米区育种目标
2.1 高产稳产
2.2 早熟耐密
2.3 抗倒易机收
2.4 综合抗性强
2.5 商品品质优
3 黄淮海夏玉米区的育种策略
3.1 育种策略1: 降优(杂种优势)增密(密度)
3.2 育种策略2: 增容(容重)扩率(脱籽率)
3.3 育种策略3: 多重(基因)增抗(逆)
3.4 育种策略4: 增(气生)根抗倒(伏)
3.5 育种策略5: 提早散粉避高温
3.6 育种策略6: 科企、校企联合全产业链攻关
科研院所及高校的优势在于基础研究能力,包括核心种质的创制和关键基因的发掘与高效育种技术体系建立,而种业企业在自交系的选育、杂交组合的鉴定和优良品种的示范推广等方面具有显著优势。因此,在当前种业变革的形势下,加强科企、校企间的密切合作,实现优势互补、强强联合,是解决目前我国种业企业创新能力低和加快玉米种业振兴的一条有效途径。
4 小结
————————
参考文献
[1] Li Q, Wang J C, Ye J W, Zheng X X, Xiang X L, Li C S, Fu M M, Wang Q, Zhang Z Y, Wu Y R. The maize imprinted gene Floury3 encodes a PLATZ protein required for tRNA and 5S rRNA transcription through interaction with RNA polymerase III. Plant Cell, 2017, 29: 2661–2675.
[2] 徐小曼, 王成军. 我国玉米生产要素配置效率研究: 基于黑龙江、河南和四川3个玉米主产省的调查. 玉米科学, 2023, 31(2): 174–180.
Xu X M, Wang C J. Study on allocation efficiency of corn production factors in China: based on the investigation of three major corn producing provinces, Heilongjiang, Henan, and Sichuan. J Maize Sci, 2023, 31(2): 174–180 (in Chinese with English abstract).
[3] 刘世梦倪, 宋敏. 品种改良对玉米单产的贡献率分析. 河南农业大学学报, 2021, 55: 364–371.
Liu S M N, Song M. Analysis on the contribution rate of variety improvement to corn yield. J Henan Agric Univ, 2021, 55: 364–371 (in Chinese with English abstract).
[4] 戴景瑞, 鄂立柱. 我国玉米育种科技创新问题的几点思考. 玉米科学, 2010, 18(1): 1–5.
Dai J R, E L Z. Scientific and technological innovation of maize breeding in China. J Maize Sci, 2010, 18(1): 1–5 (in Chinese with English abstract).
[5] Ye X X, Ye Y, Chai R S, Li J L, Ma C, Li H Y, Xiong Q Z, Gao H J. The influence of a year-round tillage and residue management model on soil N fractions in a wheat-maize cropping system in central China. Sci Rep, 2019, 9: 4767.
[6] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展. 作物学报, 2021, 47: 1843–1853.
Zhou B Y, Ge J Z, Sun X F, Han Y L, Ma W, Ding Z S, Li C F, Zhao M. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain. Acta Agron Sin, 2021, 47: 1843–1853 (in Chinese with English abstract).
[7] 周宝元, 马玮, 孙雪芳,高卓晗, 丁在松, 李从锋, 赵明. 播/收期对冬小麦-夏玉米一年两熟模式周年气候资源分配与利用特征的影响. 中国农业科学, 2019, 52: 1501–1517.
Zhou B Y, Ma W, Sun X F, Gao Z H, Ding Z S, Li C F, Zhao M. Effects of different sowing and harvest dates of winter wheat-summer maize under double cropping system on the annual climate resource distribution and utilization. Sci Agric Sin, 2019, 52: 1501–1517 (in Chinese with English abstract).
[8] 任冠怡. 我国玉米主要产区生产效率分析. 河南农业大学硕士学位论文, 河南郑州, 2019.
Ren G Y. The Analysis of Corn Productivity in China Major Production Areas. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2019 (in Chinese with English abstract).
[9] 许海涛, 王友华, 许波, 王成业, 张海申. 黄淮海区玉米生产发展现状、存在问题及对策. 玉米科学, 2007, 15(增刊1): 160–162.
Xu H T, Wang Y H, Xu B, Wang C Y, Zhang H S. Present situation and problem in the development of corn production in Huang-Huai-Hai Valley and its countermeasure. J Maize Sci, 2007, 15(S1): 160–162 (in Chinese with English abstract).
[10] Zhao C, Liu B, Piao S L, Wang X H, Lobell D B, Huang Y, Huang M T, Yao Y T, Bassu S, Ciais P, Durand J L, Elliott J, Ewert F, Janssens I A, Li T, Lin E D, Liu Q, Martre P, Müller C, Peng S S, Peñuelas J, Ruane A C, Wallach D, Wang T, Wu D H, Liu Z, Zhu Y, Zhu Z C, Asseng S. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA, 2017, 114: 9326–9331.
[11] 刘万才, 刘振东, 黄冲, 陆明红, 刘杰, 杨清坡. 近10年农作物主要病虫害发生危害情况的统计和分析. 植物保护, 2016, 42(5): 1–9.
Liu W C, Liu Z D, Huang C, Lu M H, Liu J, Yang Q P. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years. Plant Prot, 2016, 42(5): 1–9 (in Chinese with English abstract).
[12] 高俊, 汪慧泉, 顾东祥, 张斯梅, 张传辉, 顾克军. 秸秆还田对土壤生态及农作物生长发育影响的研究进展. 中国农学通报, 2023, 39(30): 87–93.
Gao J, Wang H Q, Gu D X, Zhang S M, Zhang C H, Gu K J. Effects of straw returning on soil ecology and crop growth and development. Chin Agric Sci Bull, 2023, 39(30): 87–93 (in Chinese with English abstract).
[13] 范非. 浅析农村土地规模化经营现状: 以山东省济南市为例. 中国统计, 2019(4):
72–74.
Fan F. A brief analysis of the current situation of large-scale
management of rural land: taking Jinan city of Shandong province as an example. China Stat, 2019, (4): 72–74 (in Chinese).
[14] 王琳颖. 乡村振兴战略下农村土地经营权流转的法律规制. 现代农业研究, 2022, 28(3):
30–32.
Wang L Y. Legal regulation of rural land management right transfer under the strategy
of rural revitalization. Mod Agric Res, 2022, 28(3): 30–32 (in Chinese
with English abstract).
[15] 韩占兵. 农业生产规模化经营现状、障碍与政策支持. 农村经济与科技, 2018, 29(7):
1–2.
Han Z B. Current situation, obstacles and policy support of large-scale
operation of agricultural production. Rural Econ Sci Technol, 2018,
29(7): 1–2 (in Chinese).
[16] 祖祎祎. 玉米单粒播种子质量标准即将实施. 农民日报, 2021-10-26 (007).
Zu W W. The quality standard of maize single-seed sowing will be implemented soon. Farmers’ Daily, 2021-10-26 (007) (in Chinese).
[17] 孙海全, 邓奥严, 姜业成, 王立春, 尤丽娜. 玉米生产全程机械化现状和存在的问题及发展趋势. 农机科技推广, 2024, (5): 4–8.
Sun H Q, Deng A Y, Jiang Y C, Wang L C, You L N. Present situation, existing problems and development trend of corn production mechanization. Agric Mach Technol Ext, 2024, (5): 4–8 (in Chinese).
[18] 辛尚龙, 赵武云, 曲浩, 杨天, 史瑞杰, 闫治斌, 马海军. 玉米机械化收获技术现状分析及发展趋势. 农机化研究, 2024, 46(10): 9–14.
Xin S L, Zhao W Y, Qu H, Yang T, Shi R J, Yan Z B, Ma H J. Current situation analysis and development trend of maize mechanized harvesting technology. J Agric Mech Res, 2024, 46(10): 9–14 (in Chinese with English abstract).
[19] Miu P. Combine Harvesters: Theory, Modeling, and Design. BocaTaton: CRC Press Inc., 2015. pp 3–25.
[20] 王克如, 李璐璐, 高尚, 王浥州, 黄兆福, 谢瑞芝, 明博, 侯鹏, 薛军, 张国强, 侯梁宇, 李少昆. 中国玉米机械粒收质量主要指标分析. 作物学报, 2021, 47: 2440–2449.
Wang K R, Li L L, Gao S, Wang Y Z, Huang Z F, Xie R Z, Ming B, Hou P, Xue J, Zhang G Q, Hou L Y, Li S K. Analysis of main quality index of corn harvesting with combine in China. Acta Agron Sin, 2021, 47: 2440–2449 (in Chinese with English abstract).
[21] 胥丽艳. 玉米机械化收获损失影响因素分析. 农机使用与维修, 2023, (10): 79–81.
Xu L Y. Analysis of factors influencing losses in mechanized corn harvesting. Agric Mach Using Maint, 2023, (10): 79–81 (in Chinese with English abstract).
[22] Wu Y R, Messing J. RNA interference can rebalance the nitrogen sink of maize seeds without losing hard endosperm. PLoS One, 2012, 7: e32850.
[23] Vasal S K, Villegas E, Bjarnason M, Gelaw B, Goertz P. Genetic modifiers and breeding strategies in developing hard endosperm opaque-2 materials. Proceedings of the Improvement of Quality Traits of Maize for Grain and Silage Use, 1980. pp 37–73.
[24] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势. 作物学报, 2023, 49: 2064–2076.
Bai Y, Gao T T, Lu S, Zheng S B, Lu M. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020. Acta Agron Sin, 2023, 49: 2064–2076 (in Chinese with English abstract).
[25] Mansfield B D, Mumm R H. Survey of plant density tolerance in U.S. maize germplasm. Crop Sci, 2014, 54: 157–173.
[26] Wang Y B, Bao J X, Wei X, Wu S W, Fang C W, Li Z W, Qi Y C, Gao Y X, Dong Z Y, Wan X Y. Genetic structure and molecular mechanisms underlying the formation of tassel, anther, and pollen in the male inflorescence of maize (Zea maysL.). Cells, 2022, 11: 1753.
[27] 任佰朝, 李利利, 董树亭, 刘鹏, 赵斌, 杨今胜, 王丁波, 张吉旺. 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响. 作物学报, 2016, 42: 1864–1872.
Ren B Z, Li L L, Dong S T, Liu P, Zhao B, Yang J S, Wang D B, Zhang J W. Effects of plant density on stem traits and lodging resistance of summer maize hybrids with different plant heights. Acta Agron Sin, 2016, 42: 1864–1872 (in Chinese with English abstract).
[28] Wang H H, Huang Y C, Xiao Q, Huang X, Li C S, Gao X Y, Wang Q, Xiang X L, Zhu Y D, Wang J C, Wang W Q, Larkins B A, Wu Y R. Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity. Nat Commun, 2020, 11: 5346.
[29] Wang H Q, Wang K, Du Q G, Wang Y F, Fu Z Y, Guo Z Y, Kang D M, Li W X, Tang J H. Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. New Phytol, 2018, 218: 1233–1246.
[30] Wang H C, Sayyed A, Liu X Y, Yang Y Z, Sun F, Wang Y, Wang M D, Tan B C. SMALL KERNEL4 is required for mitochondrial cox1 transcript editing and seed development in maize. J Integr Plant Biol, 2020, 62: 777–792.
[31] Huang Y C, Wang H H, Huang X, Wang Q, Wang J C, An D, Li J Q, Wang W Q, Wu Y R. Maize VKS1 regulates mitosis and cytokinesis during early endosperm development. Plant Cell, 2019, 31: 1238–1256.
[32] Zhang S S, Zhan J P, Yadegari R. Maize opaque mutants are no longer so opaque. Plant Reprod, 2018, 31: 319–326.
[33] Chen G S, Zhang B, Ding J Q, Wang H Z, Deng C, Wang J L, Yang Q H, Pi Q Y, Zhang R Y, Zhai H Y, Dong J F, Huang J S, Hou J B, Wu J H, Que J M, Zhang F, Li W Q, Min H X, Tabor G, Li B L, Liu X G, Zhao J R, Yan J B, Lai Z B. Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora. Nat Commun, 2022, 13: 4392.
[34] Deng C, Leonard A, Cahill J, Lv M, Li Y R, Thatcher S, Li X Y, Zhao X D, Du W J, Li Z, Li H M, Llaca V, Fengler K, Marshall L, Harris C, Tabor G, Li Z M, Tian Z Q, Yang Q H, Chen Y H, Tang J H, Wang X T, Hao J J, Yan J B, Lai Z B, Fei X H, Song W B, Lai J S, Zhang X C, Shu G P, Wang Y B, Chang Y X, Zhu W L, Xiong W, Sun J, Li B L, Ding J Q. The RppC-AvrRppC NLR-effector interaction mediates the resistance to southern corn rust in maize. Mol Plant, 2022, 15: 904–912.
[35] Mu X H, Dai Z Z, Guo Z Y, Zhang H, Yang J P, Gan X K, Li J K, Liu Z H, Tang J H, Gou M Y. Systematic dissection of disease resistance to southern corn rust by bulked-segregant and transcriptome analysis. Crop J, 2022, 10: 426–435.
[36] Ren W, Zhao L F, Liang J X, Wang L F, Chen L M, Li P C, Liu Z G,Li X J,Zhang Z H, Li J P, He K H, Zhao Z, Ali F, Mi G H, Yan J B, Zhang F S, Chen F J, Yuan L X, Pan Q C. Genome-wide dissection of changes in maize root system architecture during modern breeding. Nat Plants, 2022, 8: 1408–1422.
[37] 霍治国, 张海燕, 李春晖, 孔瑞, 江梦圆. 中国玉米高温热害研究进展. 应用气象学报, 2023, 34:
1–14.
Huo Z G, Zhang H Y, Li C H,Kong R, Jiang M
Y. Review on high temperature heat damage of maize in China. J Appl Meteor Sci,
2023, 34: 1–14 (in Chinese with English abstract).
[38] 降志兵, 陶洪斌, 吴拓, 王璞, 宋庆芳. 高温对玉米花粉活力的影响. 中国农业大学学报, 2016, 21(3):
25–29.
Jiang Z B, Tao H B, Wu T, Wang P, Song Q F. Effects of high temperature on
maize pollen viability. J China Agric Univ, 2016, 21(3): 25–29 (in Chinese with English abstract).
[39] 杨国虎. 玉米花粉花丝耐热性研究进展. 种子, 2005, 24(2): 47–51.
Yang G H. The progress of pollens and silks thermotolerance in maize. Seed, 2005, 24(2): 47–51 (in Chinese).
[40] Djalovic I, Kundu S, Bahuguna R N, Pareek A, Raza A, Singla-Pareek S L, Prasad P V V, Varshney R K. Maize and heat stress: physiological, genetic, and molecular insights. Plant Genome, 2024, 17: e20378.
[41] Zenda T, Wang N, Dong A Y, Zhou Y Z, Duan H J. Reproductive-stage heat stress in cereals: impact, plant responses and strategies for tolerance improvement. Int J Mol Sci, 2022, 23: 6929.
[42] 穆心愿, 马智艳, 卢良涛, 吕姗姗, 刘天学, 胡秀丽, 李树岩, 蒋寒涛, 范艳萍, 赵霞, 唐保军, 夏来坤. 授粉期高温胁迫对夏玉米植株形态、叶片光合及产量的影响. 中国生态农业学报, 2024, 32: 106–118.
Mu X Y, Ma Z Y, Lu L T, Lyu S S, Liu T X, Hu X L, Li S Y, Jiang H T, Fan Y P, Zhao X, Tang B J, Xia L K. Effects of high temperature stress during pollination on plant morphology, leaf photosynthetic characteristics and yield of summer maize. Chin J Eco-Agric, 2024, 32: 106–118 (in Chinese with English abstract).
https://link.cnki.net/urlid/11.1809.S.20240906.1537.002
期刊简介
敬请关注 欢迎投稿
微信ID: zwxb66