农业农村部甘薯生物学与生物技术重点实验室/中国农业大学农学院, 北京100193
摘要 Abstract
1 材料与方法
1.1 植物材料
1.2 菌株与质粒
1.3 IbHT1基因的克隆与序列分析
1.4 IbHT1基因的表达分析
1.5 IbHT1蛋白的亚细胞定位分析
1.6 IbHT1蛋白的转录激活活性分析
1.7 蛋白纯化分析
1.8 转基因甘薯植株的获得
1.9 转基因甘薯植株的抗旱性鉴定
1.10 互作蛋白的筛选
1.11 统计分析方法
2 结果与分析
2.1 IbHT1基因的克隆与序列分析
图1 IbHT1基因的克隆及序列分析
A: IbHT1基因扩增产物; B: HT1蛋白序列的多重比较; C: IbHT1蛋白结构示意图; D: IbHT1蛋白进化树分析; E: IbHT1与AtHT1的基因组结构比较。
2.2 IbHT1基因受PEG-6000的诱导下调表达
2.3 IbHT1蛋白定位于细胞膜上
2.4 IbHT1蛋白无转录激活活性
在酵母系统中检测IbHT1蛋白全长转录激活活性,转化pGBKT7-IbHT1的酵母细胞在SD/-Trp培养基上正常生长,但是在SD/-Trp/-His/-Ade培养基上无法生长,表明IbHT1蛋白无转录激活活性(图4)。
2.5 IbHT1在DE3中诱导出具有相应大小的蛋白
转入pET28a-IbHT1载体的DE3诱导完成的蛋白经过Western Blot检测后得到45~65 kD蛋白,大小与预测蛋白大小相一致,表明IbHT1可以在DE3中进行原核表达(图5)。
2.6 转IbHT1基因甘薯植株的获得
为研究IbHT1基因在甘薯干旱胁迫响应中的功能,利用根癌农杆菌EHA105介导的甘薯胚性悬浮细胞遗传转化方法,获得11株IbHT1过表达甘薯植株(编号为OH-1~OH-11)和4株RNA干扰植株(编号为RH-1~RH-4) (图6)。
图6 转IbHT1基因甘薯植株的获得
2.7 干扰IbHT1基因提高了甘薯的抗旱性
根据转基因甘薯植株中IbHT1的表达水平,选择2个过表达株系(OH-10和OH-11)及2个RNAi株系(RH-3和RH-4)进行了抗旱性评价。将转基因植株和野生型对照植株(WT)在含有20% PEG-6000的MS培养基上培养1个月后发现,与WT相比,过表达IbHT1基因甘薯植株的长势显著减弱,鲜重显著降低;而RNAi甘薯植株的长势显著增强,鲜重显著增加。表明干扰IbHT1基因提高了甘薯的抗旱性(图7)。
图7 转IbHT1基因甘薯植株的抗旱性鉴定
A, B: 在正常MS培养基上植株的生长情况与鲜重(对照); C, D: 在含有20% PEG-6000的MS培养基上植株的生长情况与鲜重。标尺为10 cm。*和**分别表示用Student’s t测验在P < 0.05和P < 0.01水平差异显著。WT: 野生型; OH-10和OH-11: IbHT1基因过表达株系; RH-3和RH-4: IbHT1基因RNA干扰株系。
2.8 IbHT1拟互作蛋白的筛选
3 讨论
另外,本研究通过酵母双杂交筛选得到包括MYB1R1和VOZ1在内的10个与IbHT1互作的蛋白(表2)。MYB是植物最大的转录因子家族之一,其包含R2R3-MYB、MYB1-R、4R-MYB和R1R2R3-MYB四个亚家族,广泛参与包括抗旱在内的植物多个非生物胁迫过程[41-42]。在拟南芥中,AtMYB2、AtMYB32、AtMYB33、AtMYB65和AtMYB101参与植物抗旱胁迫响应过程[43-45]。在水稻中,过表达OsMYB2和OsMYB6植株的抗旱性显著增强,而OsMYB1R1负调控水稻的抗旱性[46-48]。在棉花中,GbMYB5正调控植株抗旱性[49]。StMYB1R-1正调控马铃薯的抗旱性[50]。VOZ蛋白是一种植物特异性的转录因子家族,已有研究表明,其广泛参与包括抗旱在内的植株非生物胁迫响应[51]。AtVOZ1负调控拟南芥的耐热性[52]。GmVOZ1G参与大豆的干旱响应[51]。在番茄中SlVOZ1通过影响蛋白激酶SlOST1的稳定性,参与调控植株抗旱性[53]。因此,我们推断IbHT1可能通过与MYB1R1和VOZ1蛋白互作参与调控甘薯的抗旱性。
4 结论
参考文献
[1] 赵杨, 杨永青, 丁杨林, 张蘅, 谢彦杰, 赵春钊, 刘林川, 王鹏程. 植物非生物逆境学科发展综述. 植物生理学报, 2024, 60: 248–270.
Zhao Y, Yang Y Q, Ding Y L, Zhang H, Xie Y J, Zhao C Z, Liu L C, Wang P C. Plant abiotic stress biology: a decade update. Plant Physiol J, 2024, 60: 248–270 (in Chinese with English abstract).
[2] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313–324.
[3] 任洪雷, 朱筱, 张丰屹, 张必弦, 王家军, 王金生, 吴俊江, 王广金, 邱丽娟. 干旱胁迫的影响及抗旱性研究进展. 分子植物育种, 网络首发[2024-01-22], https://link.cnki.net/urlid/46.1068.S.20240119.1548.002.
Ren H L, Zhu X, Zhang F Y, Zhang B X, Wang J J, Wang J S, Wu J J, Wang G J, Qiu L J. Effect of drought stress and research progress of drought resistance. Mol Plant Breed, Published online [2024-01-22], https://link.cnki.net/urlid/46.1068.S.20240119.1548.002 (in Chinese with English abstract).
[4] 朱婷婷, 王彦霞, 裴丽丽, 谢传磊, 陈明, 陈隽, 周永斌, 马有志, 徐兆师. 植物蛋白激酶与作物非生物胁迫抗性的研究. 植物遗传资源学报, 2017, 18: 763–770.
Zhu T T, Wang Y X, Pei L L, Xie C L, Chen M, Chen J, Zhou Y B, Ma Y Z, Xu Z S. Research progress of plant protein kinase and abiotic stress resistance. J Plant Genet Resour, 2017, 18: 763–770 (in Chinese with English abstract).
[5] 张鑫苗, 伍国强, 魏明. MAPK在植物响应逆境胁迫中的作用. 草业学报, 2024, 33(1): 182–197.
Zhang X M, Wu G Q, Wei M. The role of MAPK in plant response to abiotic stress. Acta Pratac Sin, 2024, 33(1): 182–197 (in Chinese with English abstract).
[6] Chen X X, Ding Y L, Yang Y Q, Song C P, Wang B S, Yang S H, Guo Y, Gong Z Z. Protein kinases in plant responses to drought, salt, and cold stress. J Integr Plant Biol, 2021, 63: 53–78.
[7] Chen J, Wang L H, Yuan M. Update on the roles of rice MAPK cascades. Int J Mol Sci, 2021, 22: 1679.
[8] Li Y Y, Cai H X, Liu P, Wang C Y, Gao H Y, Wu C G, Yan K, Zhang S Z, Huang J G, Zheng C C. Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3. Biochem Biophys Res Commun, 2017, 484: 292–297.
[9] Ning J, Li X H, Hicks L M, Xiong L Z. A Raf-Like MAPKKK Gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol, 2010, 152: 876–890.
[10] Ma H G, Chen J, Zhang Z Z, Ma L, Yang Z Y, Zhang Q L, Li X H, Xiao J H, Wang S P. MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice. Plant J, 2017, 92: 557–570.
[11] Zhao L L, Yan J W, Xiang Y, Sun Y, Zhang A Y. ZmWRKY104 transcription factor phosphorylated by ZmMPK6 functioning in ABA-induced antioxidant defense and enhance drought tolerance in maize. Biology, 2021, 10: 893.
[12] Li F J, Li M Y, Wang P, Cox K L Jr, Duan L S, Dever J K, Shan L B, Li Z H, He P. Regulation of cotton (Gossypium hirsutum) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59. New Phytol, 2017, 215: 1462–1475.
[13] Jeong S, Lim C W, Lee S C. The pepper MAP Kinase CaAIMK1 positively regulates ABA and drought stress responses. Front Plant Sci, 2020, 11: 720.
[14] Wang J Y, Chitsaz F, Derbyshire M K, Gonzales N R, Gwadz M, Lu S N, Marchler G H, Song J S, Thanki N, Yamashita R A, Yang M Z, Zhang D C, Zheng C J, Lanczycki C J, Marchler-Bauer A. The conserved domain database in 2023. Nucleic Acids Res, 2023, 51: D384–D388.
[15] Hashimoto M, Negi J, Young J, Israelsson M, Schroeder J I, Iba K. Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat Cell Biol, 2006, 8: 391–397.
[16] Matrosova A, Bogireddi H, Mateo-Peñas A, Hashimoto-Sugimoto M, Iba K, Schroeder J I, Israelsson-Nordström M. The HT1 protein kinase is essential for red light-induced stomatal opening and genetically interacts with OST1 in red light and CO2-induced stomatal movement responses. New Phytol, 2015, 208: 1126–1137.
[17] Horak H, Sierla M, Toldsepp K, Wang C, Wang Y S, Nuhkat M, Valk E, Pechter P, Merilo E, Salojarvi J, Overmyer K, Loog M, Brosche M, Schroeder J I, Kangasjarvi J, Kollist H. A dominant mutation in the HT1 kinase uncovers roles of MAP kinases and GHR1 in CO2-induced stomatal closure. Plant Cell, 2016, 28: 2493–2509.
[18] Gahlowt P, Tripathi D K, Singh S, Gupta R, Singh V P. Does MPK4/12-HT1 function as a CO2/bicarbonate sensor to regulate the stomatal conductance under high CO levels? Plant Cell Rep, 2023, 42: 2043–2045.
[19] 后猛, 李臣, 张允刚, 闫会, 王欣, 唐维, 宋炜涵, 高闰飞, 李强. 优质高产淀粉型甘薯徐薯37选育及性状鉴定. 江苏师范大学学报(自然科学版), 2023, 41(3): 45–47.
Hou M, Li C, Zhang Y G, Yan H, Wang X, Tang W, Song W H, Gao R F, Li Q. Breeding and character identification of a sweetpotato variety Xushu 37 for starch use with high yield and quality. J Jiangsu Norm Univ (Nat Sci), 2023, 41(3): 45–47 (in Chinese with English abstract).
[20] Wang Z, Li X, Gao X R, Dai Z R, Peng K, Jia L C, Wu Y K, Liu Q C, Zhai H, Gao S P, Zhao N, He S Z, Zhang H. IbMYB73 targets abscisic acid-responsive IbGER5 to regulate root growth and stress tolerance in sweet potato. Plant Physiol, 2024, 194: 787–804.
[21] Yan M X, Li M, Wang Y Z, Wang X Y, Moeinzadeh M H, Quispe-Huamanquispe D G, Fan W J, Fang Y J, Wang Y Q, Nie H Z, Wang Z Y, Tanaka A, Heider B, Kreuze J F, Gheysen G, Wang H X, Vingron M, Bock R, Yang J. Haplotype-based phylogenetic analysis and population genomics uncover the origin and domestication of sweetpotato. Mol Plant, 2024, 17: 277–296.
[22] 吴胜男, 孙凯, 张海, 刘峰, 王凤. 甘薯分子标记辅助育种研究进展. 黑龙江农业科学, 2022, (9): 111–115.
Wu S N, Sun K, Zhang H, Liu F, Wang F. Research progress of sweet potato molecular marker-assisted breeding. Heilongjiang Agric Sci, 2022, (9): 111–115 (in Chinese with English abstract).
[23] Jin R, Kim B H, Ji C Y, Kim H S, Li H M, Ma D F, Kwak S S. Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Plant Physiol Biochem, 2017, 118: 45–54.
[24] Zhou Y Y, Zhai H, Xing S H, Wei Z H, He S Z, Zhang H, Gao S P, Zhao N, Liu Q C. A novel small open reading frame gene, IbEGF, enhances drought tolerance in transgenic sweet potato. Front Plant Sci, 2022, 13: 965069.
[25] Ren Z T, He S Z, Zhou Y Y, Zhao N, Jiang T, Zhai H, Liu Q C. A sucrose non-fermenting-1-related protein kinase-1 gene, IbSnRK1, confers salt, drought and cold tolerance in sweet potato. Crop J, 2020, 8: 905–917.
[26] Wang Y X, Zhang H, Gao S P, Zhai H, He S Z, Zhao N, Liu Q C. An ABA-inducible gene IbTSJT1 positively regulates drought tolerance in transgenic sweetpotato. J Integr Agric, 2023. Published online [2023-10-18], https://doi.org/10.1016/j.jia.2023.10.015.
[27] Zhang H, Gao X R, Zhi Y H, Li X, Zhang Q, Niu J B, Wang J, Zhai H, Zhao N, Li J G, Liu Q C, He S Z. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytol, 2019, 223: 1918–1936.
[28] Zhang H, Wang Z, Li X, Gao X R, Dai Z R, Cui Y F, Zhi Y H, Liu Q C, Zhai H, Gao S P, Zhao N, He S Z. The IbBBX24-IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato. New Phytol, 2022, 233: 1133–1152.
[29] Xue L Y, Wei Z H, Zhai H, Xing S H, Wang Y X, He S Z, Gao S P, Zhao N, Zhang H, Liu Q C. The IbPYL8-IbbHLH66-IbbHLH118 complex mediates the abscisic acid-dependent drought response in sweet potato. New Phytol, 2022, 236: 2151–2171.
[30] 周桦楠, 于涛, 刘冠求, 潘家荃, 万博, 刘振雷. 甘薯MAPK基因家族的鉴定及生物信息学分析. 沈阳农业大学学报, 2021, 52: 513–520.
Zhou H N, Yu T, Liu G Q, Pan J Q, Wan B, Liu Z L. Genome-wide identification and bioinformatic analysis of mitogen activated protein kinase gene family in sweet potato. J Shenyang Agric Univ, 2021, 52: 513–520 (in Chinese with English abstract).
[31] 靳容, 刘明, 赵鹏, 张强强, 张爱君, 唐忠厚. 甘薯丝裂原活化蛋白激酶MPK6对低温胁迫的响应. 中国农业科学, 2021, 54: 4265–4273.
Jin R, Liu M, Zhao P, Zhang Q Q, Zhang A J, Tang Z H. IbMKP6, A mitogen-activated protein kinase, confers low temperature tolerance in sweetpotato. Sci Agric Sin, 2021, 54: 4265–4273 (in Chinese with English abstract).
[32] 靖小菁, 杨新笋, 靳晓杰, 刘意, 雷剑, 王连军, 柴沙沙, 张文英, 焦春海. 甘薯蔓割病(Fusarium oxysporum f. sp. batatas)相关基因IbMAPKK9的克隆与特性分析. 作物学报, 2023, 49: 3289–3301.
Jing X J, Yang X S, Jin X J, Liu Y, Lei J, Wang L J,Chai S S, Zhang W Y, Jiao C H. Cloning and characterization of IbMAPKK9 gene associated with Fusarium oxysporum f. sp. batatas in sweet potato. Acta Agron Sin, 2023, 49: 3289–3301 (in Chinese with English abstract).
[33] Zhu H, Zhou Y Y, Zhai H, He S Z, Zhao N, Liu Q C. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. J Integr Agric, 2019, 18: 9–23.
[34] Xing S H, Zhu H, Zhou Y Y, Xue L Y, Wei Z H, Wang Y X, He S Z, Zhang H, Gao S P, Zhao N, Zhai H, Liu Q C. A cytochrome P450 superfamily gene, IbCYP82D47, increases carotenoid contents in transgenic sweet potato. Plant Sci, 2022, 318: 111233.
[35] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547–1549.
[36] Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69–76.
[37] Zhou Y Y, Zhu H, He S Z, Zhai H, Zhao N, Xing S H, Wei Z H, Liu Q C. A novel sweetpotato transcription factor gene IbMYB116 enhances drought tolerance in transgenic Arabidopsis. Front Plant Sci, 2019, 10: 1025.
[38] Zhang H, Zhang Q, Zhai H, Gao S P, Yang L, Wang Z, Xu Y T, Huo J X, Ren Z T, Zhao N, Wang X F, Li J G, Liu Q C, He S Z. IbBBX24 promotes the jasmonic acid pathway and enhances Fusarium wilt resistance in sweet potato. Plant Cell, 2020, 32: 1102–1123.
[39] Shitamichi N, Matsuoka D, Sasayama D, Furuya T, Nanmori T. Over-expression of MAP3Kδ4, an ABA-inducible Raf-like MAP3K that confers salt tolerance in Arabidopsis. Plant Biotechnol, 2013, 30: 111–118.
[40] Li X, Wang Z, Sun S F, Dai Z R, Zhang J, Wang W B, Peng K, Geng W H, Xia S H, Liu Q C, Zhai H, Gao S P, Zhao N, Tian F, Zhang H, He S Z. IbNIEL-mediated degradation of IbNAC087 regulates jasmonic acid-dependent salt and drought tolerance in sweet potato. J Integr Plant Biol, 2024, 66: 176–195.
[41] Katiyar A, Smita S, Lenka S K, Rajwanshi R, Chinnusamy V, Bansal K C. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics, 2012, 13: 544.
[42] Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci, 2015, 16: 15811–15851.
[43] Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63–78.
[44] Li X M, Zhong M, Qu L N, Yang J X, Liu X Q, Zhao Q, Liu X M, Zhao X Y. AtMYB32 regulates the ABA response by targeting ABI3, ABI4 and ABI5 and the drought response by targeting CBF4 in Arabidopsis. Plant Sci, 2021, 310: 110983.
[45] Wyrzykowska A, Bielewicz D, Plewka P, Soltys-Kalina D, Wasilewicz-Flis I, Marczewski W, Jarmolowski A, Szweykowska-Kulinska Z. The MYB33, MYB65, and MYB101 transcription factors affect Arabidopsis and potato responses to drought by regulating the ABA signaling pathway. Physiol Plant, 2022, 174: e13775.
[46] Yang A, Dai X Y, Zhang W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot, 2012, 63: 2541–2556.
[47] Tang Y H, Bao X X, Zhi Y L, Wu Q, Guo Y R, Yin X H, Zeng L Q, Li J, Zhang J, He W L, Liu W H, Wang Q W, Jia C K, Li Z K, Liu K. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci, 2019, 10: 168.
[48] Peng Y, Tang N, Zou J, Ran J, Chen X B. Rice MYB transcription factor OsMYB1R1 negatively regulates drought resistance. Plant Growth Regul, 2023, 99: 515–525.
[49] Chen T Z, Li W J, Hu X H, Guo J R, Liu A M, Zhang B L. A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant Cell Physiol, 2015, 56: 917–929.
[50] Shin D J, Moon S J, Han S, Kim B G, Park S R, Lee S K, Yoon H J, Lee H E, Kwon H B, Baek D, Yi B Y, Byun M O. Expression of StMYB1R-1, a novel potato single MYB-Like domain transcription factor, increases drought tolerance. Plant Physiol, 2011, 155: 421–432.
[51] Li B, Zheng J C, Wang T T, Min D H, Wei W L, Chen J, Zhou Y B, Chen M, Xu Z S, Ma Y Z. Expression analyses of soybean VOZ transcription factors and the role of GmVOZ1G in drought and salt stress tolerance. Int J Mol Sci, 2020, 21: 2177.
[52] Song C, Lee J, Kim T, Hong J C, Lim C O. VOZ1, a transcriptional repressor of DREB2C, mediates heat stress responses in Arabidopsis. Planta, 2018, 247: 1439–1448.
[53] Chong L, Xu R, Huang P C, Guo P C, Zhu M K, Du H, Sun X L, Ku L X, Zhu J K, Zhu Y F. The tomato OST1-VOZ1 module regulates drought-mediated flowering. Plant Cell, 2022, 34: 2001–2018.
本文已在中国知网网络首发,网址:
https://link.cnki.net/urlid/11.1809.S.20241010.1714.031
期刊简介
敬请关注 欢迎投稿
微信ID: zwxb66