刘永惠 沈一 沈悦 梁满 沙琴 张旭尧 陈志德*
江苏省农业科学院经济作物研究所,江苏南京 210014
摘要 Abstract
该研究针对干旱胁迫响应基因AhMYB44-11的启动子的功能进行研究,选题具有重要意义。论文从花生基因组中扩增获得该基因的启动子序列AhMYB44-11-Pro,分别构建了不同截短缺失启动子的GUS融合表达载体,利用农杆菌介导的遗传转化体系,分析了启动子的活性和表达模式,研究结果为全面解析AhMYB44的生物学功能和花生抗旱性遗传改良提供了重要的参考。论文试验设计合理,结果正确可靠,表述清楚,格式规范,建议发表。
前期研究中我们获得了花生中6个MYB44同源基因,它们分别位于不同染色体;组织及胁迫诱导表达分析显示它们具有很多的相似之处,但在干旱胁迫条件下的表达模式相反,表现为AhMYB44-05/15/06/16受干旱胁迫诱导下调表达,而AhMYB44-01/11呈上调表达趋势;同时AhMYB44-11过表达的拟南芥转基因植株表现出抗旱性增强[24]。因此,本研究重点分析AhMYB44-11基因的启动子AhMYB44-11-pro,明确启动子的活性及表达特征,为进一步解析花生转录因子AhMYB44的调控功能奠定理论基础。
1 材料与方法
1.1 试验材料
1.1.1 植物材料及培养条件
1.1.2 菌株、载体与试剂
1.2 启动子序列功能预测及载体构建
1.2.1 AhMYB44-1/11启动子顺式作用元件分析
1.2.2 AhMYB44-11启动子序列克隆
1.2.3 AhMYB44-11-pro系列重组载体构建
为进一步分析启动子的活性和表达模式,以上述重组质粒为模板,结合顺式作用元件分布情况,分别构建AhMYB44-11-pro的全长序列及5'端部分截短序列与GUS基因融合的重组表达载体。设计不同的同源重组引物Pro1~Pro6,进行PCR扩增;获得的PCR产物通过1.0%~1.5%琼脂糖凝胶电泳回收目的片段;参照同源重组试剂盒的实验方法将目的片段与双酶切(Hind Ⅲ和Nco Ⅰ)后的pCAMBIA1301线性载体连接,使目的片段P1~P6分别替换掉载体中GUS报告基因5'端上游的LacZ和CaMV35S强启动子片段;并根据测序结果进一步筛选出阳性克隆(文中涉及的引物见表1)。
1.3 农杆菌介导的遗传转化
1.3.1 烟草瞬时转化
1.3.2 拟南芥遗传转化
1.4 转基因拟南芥植株的干旱胁迫处理
1.5 GUS活性检测分析
1.5.1 GUS组织染色分析
1.5.2 GUS酶活性定量分析
将待测样品用液氮在预冷的研钵中研磨成粉状,精确称取其重量;每100 mg粉末加入1 mL酶提取液,涡旋振荡使其充分混匀;12,000×g, 4℃离心10 min,吸取上清至新的离心管中,置于冰上待用;根据Bradford蛋白测定法确定各上清的蛋白浓度;并取20 μL上清,加入180 μL预热的4-MUG底物液混匀,37℃温浴反应;分别在0 min和60 min时,取40 μL反应液加入160 μL 0.2 mol L-1 Na2CO3终止液;利用荧光酶标仪,在激发波长365 nm、发射波长455 nm条件下测定荧光强度,通过4-MU标准曲线获得各样本反应产生4-MU的浓度,折算出GUS酶活性;每个样品3次重复。
2 结果与分析
由图1可知,激素调控元件方面,AhMYB44-01启动子包含4类激素响应元件(乙烯ERE、脱落酸AAGAA-motif、水杨酸TCA-element、茉莉酸甲酯CGTCA-motif & TGACG-motif);AhMYB44-11启动子仅含有2类,除同样的茉莉酸甲酯响应元件外,还有赤霉素响应元件GARE-motif和TATC-box。光响应元件也是以AhMYB44-01启动子所含的类型较多,除双方都有的GT1-motif、MRE外,还有AT1-motif、ATCT-motif、Box4、GATA-motif;而AhMYB44-11仅有G-box和I-box。但AhMYB44-11启动子含有较多的胁迫响应元件,除常见的ARE、STRE外,干旱诱导MYB结合位点MBS的数量为2个,以及5个MYB、2个MYB-like sequence、2个Myb、2个Myb-binding site;还含有AhMYB44-01启动子没有的缺氧特异性诱导的类增强子元件GC-motif。此外,AhMYB44-11启动子还包含生长调控相关元件CAT-box和O2-site,预示着AhMYB44-11启动子可能在植物逆境胁迫和生长发育中发挥重要作用。
图1 AhMYB44-01/11启动子的顺式作用元件分布示意图
2.2 AhMYB44-11-Pro的克隆和载体构建
基于预测序列设计特异引物,从花生基因组DNA中扩增出包含AhMYB44-11启动子全长序列的片段P0,长度为2442 bp,连接T载体后并测序,结果显示启动子区与预测序列完全一致。根据启动子区的酶切位点分析结果,结合pCAMBIA 1301载体的多克隆位点,选择了Hind Ⅲ和Nco Ⅰ作为双酶切位点,基于顺式作用元件分布情况,设计不同的同源重组引物,进行PCR扩增获得目的片段。由图2可知,将PCR扩增获得启动子全长及5'端部分截短序列,分别命名为P1 (1535 bp)、P2 (1125 bp)、P3 (718 bp)、P4 (542 bp)、P5 (371 bp)、P6 (105 bp);通过同源重组的方法,构建与GUS基因融合的重组表达载体(图3),用于进一步的启动子活性分析。
M:DL2000 marker; P0:含有全长启动子序列的长片段; P1~P6:启动子全长及5'端不同程度截短的片段。
2.3 AhMYB44-11-Pro的活性特征分析
2.4 AhMYB44-11-Pro转基因植株获得及组织表达分析
为全面分析AhMYB44-11-Pro的组织表达活性特点,将构建好的P1::GUS表达载体转化拟南芥植株,筛选获得单拷贝纯合阳性后代,用于检测其在不同发育阶段的表达特性。结果表明,从种子萌发到开花、结实的大多数生长发育阶段都可以通过组织化学染色检测到GUS基因的表达,且存在一定范围内的时空表达特异性。由图6可知,在萌发2 d的幼苗中,仅胚根尖端可以检测到较弱的蓝色;但随着种子不断的萌发生长,子叶、胚根以及根毛均能染成蓝色;生长1周的幼苗中,相较于子叶,真叶的GUS着色较淡;从花序及茎节的染色结果来看,成熟植株的叶片、茎秆,以及花器官(花萼、花瓣、雄蕊、柱头)等都有GUS基因的表达;通过对茎的横切面染色发现维管束鞘细胞中的GUS活性较强;角果的染色结果进一步表明幼嫩的角果不易着色,发育中后期的角果蓝色更深,并且角果皮以及其中的中脉、网状脉的GUS活性最显著。
2.5 AhMYB44-11-Pro转基因植株的干旱胁迫诱导活性分析
3 讨论
4 结论
参考文献
[1] 万书波. 中国花生栽培学. 上海: 科技出版社, 2003. pp 1–4.
Wan S B. Peanut Cultivation in China. Shanghai: Scientific & Technical Publishers, 2003. pp 1–4 (in Chinese).
[2] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161–166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161–166 (in Chinese with English abstract).
[3] 张金霞, 刘艳丽, 赵治军, 董彦琪, 蒋福稳. 花生非生物胁迫响应转录因子研究进展. 中国油料作物学报, 2019, 41: 975–985.
Zhang J X, Liu Y L, Zhao Z J, Dong Y Q, Jiang F W. Research advances on abiotic stress response transcription factors in peanut. Chin J Oil Crop Sci, 2019, 41: 975–985 (in Chinese with English abstract).
[4] 任婧瑶, 王婧, 艾鑫, 赵姝丽, 李仍媛, 蒋春姬, 赵新华, 殷冬梅, 于海秋. 干旱胁迫下花生苗期耐旱生理应答特性分析. 中国油料作物学报, 2022, 44: 138–146.
Ren J Q, Wang J, Ai X, Zhao S L, Li R Y, Jiang C J, Zhao X H, Yin D M, Yu H Q. Physiological response of peanut at seedling stage under drought stress. Chin J Oil Crop Sci, 2022, 44: 138–146 (in Chinese with English abstract).
[5] 金锋, 丁莲鑫, 骆骏, 聂圣松, 方中明. 水稻MYB转录因子的研究进展. 植物遗传资源学报, 2023, 24: 917–926.
Jin F, Ding L X, Luo J, Nie S S, Fang Z M. Research progress of MYB transcription factors in rice. J Plant Genet Resour, 2023, 24: 917–926 (in Chinese with English abstract).
[6] Xiao R X, Zhang C, Guo X R, Li H, Lu H. MYB transcription factors and its regulation in secondary cell wall formation and lignin biosynthesis during xylem development. Int J Mol Sci, 2021, 22: 3560.
[7] Shin R, Burch A Y, Huppert K A, Tiwari S B, Murphy A S, Guilfoyle T J, Schachtman D P. The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell, 2007, 19: 2440–2453.
[8] Lyu B B, Li X J, Sun W W, Li L, Gao R, Zhu Q, Tian S M, Fu M Q, Yu H L, Tang X M, Zhang C L, Dong H S. AtMYB44 regulates resistance to the green peach aphid and diamondback moth by activating EIN2-affected defences in Arabidopsis. Plant Biol, 2013, 15: 841–850.
[9] Zou B H, Jia Z H, Tian S M, Wang X M, Gou Z H, L B B, Dong H S. AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis. Funct Plant Biol, 2013, 40: 304–313.
[10] Li D K, Li Y, Zhang L, Wang X Y, Zhao Z, Tao Z W, Wang J M, Wang J, Lin M, Li X F, Yang Y. Arabidopsis ABA receptor RCAR1/PYL9 interacts with an R2R3-type MYB transcription factor, AtMYB44. Int J Mol Sci, 2014, 15: 8473–8490.
[11] Qiu Z K, Yan S S, Xia B, Jiang J, Yu B W, Lei J J, Chen C M, Chen L, Yang Y, Wang Y Q, Tian S B, Cao B H. The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase. J Exp Bot, 2019, 70: 5343–5354.
[12] Zhou X J, Zha M R, Huang J, Li L, Imran M, Zhang C K. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. J Exp Bot, 2017, 68: 1265–1281.
[13] Wei Z Z, Hu K D, Zhao D L, Tang J, Huang Z Q, Jin P, Li Y H, Han Z, Hu L Y, Yao G F, Zhang H. MYB44 competitively inhibits the formation of the MYB340-bHLH2-NAC56 complex to regulate anthocyanin biosynthesis in purple-fleshed sweet potato. BMC Plant Biol, 2020, 20: 258.
[14] Li L X, Wei Z Z, Zhou Z L, Zhao D L, Tang J, Yang F, Li Y H, Chen X Y, Han Z, Yao G F, Hu K D, Zhang H. A single amino acid mutant in the EAR motif of IbMYB44.2 reduced the inhibition of anthocyanin accumulation in the purple-fleshed sweet potato. Plant Physiol Biochem, 2021, 167: 410–419.
[15] Wei L Z, Mao W W, Jia M R, Xing S N, Ali U, Zhao Y Y, Chen Y T, Cao M L, Dai Z R, Zhang K, Dou Z C, Jia W S, Li B B. FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. J Exp Bot, 2018, 69: 4805–4820.
[16] 沈悦, 沈一, 刘永惠, 梁满, 张旭尧, 陈志德. 花生AhGPAT9 基因启动子克隆及其功能分析. 中国油料作物学报, 2023, 45: 533–541.
Shen Y, Shen Y, Liu Y H, Liang M, Zhang X Y, Chen Z D. Cloning and functional analysis of peanut AhGPAT9 promoter. Chin J Oil Crop Sci, 2023, 45: 533–541 (in Chinese with English abstract).
[17] 石磊, 苗利娟, 齐飞艳, 张忠信, 高伟, 孙子淇, 黄冰艳, 董文召, 汤丰收, 张新友. 花生Δ9-硬脂酰-ACP脱氢酶基因启动子的克隆及功能分析. 作物学报, 2016, 42: 1629–1637.
Shi L, Miao L J, Qi F Y, Zhang Z X, Gao W, Sun Z Q, Huang B Y, Dong W Z, Tang F S, Zhang X Y. Cloning and functional analysis of peanut Δ9-stearoyl-acyl carrier protein desaturase promoter. Acta Agron Sin, 2016, 42: 1629–1637 (in Chinese with English abstract).
[18] Geng L L, Duan X H, Liang C, Shu C L, Song F P, Zhang J. Mining tissue-specific contigs from peanut (Arachis hypogaea L.) for promoter cloning by deep transcriptome sequencing. Plant Cell Physiol, 2014, 55: 1793–1801.
[19] Tang G Y, Xu P L, Liu W, Liu Z J, Shan L. Cloning and characterization of 5' flanking regulatory sequences of AhLEC1B gene from Arachis hypogaea L. PLoS One, 2015, 10: e0139213.
[20] 孙全喜, 徐洪明, 李春娟, 闫彩霞, 赵小波, 王娟, 苑翠玲, 单世华. 花生种子特异启动子AHSSP1的克隆及功能分析. 核农学报, 2020, 34: 460–467.
Sun Q X, Xu H M, Li C J, Yan C X, Zhao X B, Wang J, Yuan C L, Shan S H. Cloning and functional analysis of peanut seed-specific promoter AHSSP1. Acta Agric Nucl Sin, 2020, 34: 460–467 (in Chinese with English abstract).
[21] 万小荣, 莫爱琼, 刘帅, 梁建华, 李玲, 余土元, 郑奕雄. 粤油7号花生AhNCED1基因启动子克隆及其活性分析. 核农学报, 2011, 25: 692–699.
Wan X R, Mo A Q, Liu S, Liang J H, Li L, Yu T Y, Zheng Y X. Cloning and activity analysis of AhNCED1 gene promoter in peanut Yueyou 7. Acta Agric Nucl Sin, 2011, 25: 692–699 (in Chinese with English abstract).
[22] 王合春, 陈新利, 隋炯明, 毕英娜, 王晶珊, 乔利仙. 花生β-1,3-葡聚糖酶基因启动子的克隆及功能分析. 植物遗传资源学报, 2013, 14: 864–870.
Wang H C, Chen X L, Sui J M, Bi Y N, Wang J S, Qiao L X. Cloning and functional analysis of the promoter region of β-1,3-glucanase gene in peanut. J Plant Genet Resour, 2013, 14: 864–870 (in Chinese with English abstract).
[23] Chen X L, Song R T, Yu M Y, Sui J M, Wang J S, Qiao L X. Cloning and functional analysis of the chitinase gene promoter in peanut. Genet Mol Res, 2015, 14: 12710–12722.
[24] Liu Y H, Shen Y, Liang M, Zhang X Y, Xu J W, Shen Y, Chen Z D. Identification of peanut AhMYB44 transcription factors and their multiple roles in drought stress. Plants (Basel), 2022, 11: 3522.
[25] Xu Z W, Wang M P, Guo Z T, Zhu X F, Xia Z L. Identification of a 119-bp promoter of the maize sulfite oxidase gene (ZmSO) that confers high-level gene expression and ABA or drought inducibility in transgenic plants. Int J Mol Sci, 2019, 20: 3326.
[26] Wu G F, Cao A H, Wen Y H, Bao W C, She F W, Wu W Z, Zheng S, Yang N. Characteristics and Functions of MYB (v-Myb avivan myoblastsis virus oncogene homolog)-related genes in Arabidopsis thaliana. Genes (Basel), 2023, 14: 2026.
[27] Zhuang W J, Chen H, Yang M, Wang J P, Pandey M K, Zhang C, Chang W C, Zhang L S, Zhang X T, Tang R H, Garg V, Wang X J, Tang H B, Chow C N, Wang J P, Deng Y, Wang D P, Khan A W, Yang Q, Cai T C, Bajaj P, Wu K C, Guo B Z, Zhang X Y, Li J J, Liang F, Hu J, Liao B S, Liu S Y, Chitikineni A, Yan H S, Zheng Y X, Shan S H, Liu Q Z, Xie D Y, Wang Z Y, Khan S A, Ali N, Zhao C Z, Li X G, Luo Z L, Zhang S B, Zhuang R R, Peng Z, Wang S Y, Mamadou G, Zhuang Y H, Zhao Z F, Yu W C, Xiong F Q, Quan W P, Yuan M, Li Y, Zou H S, Xia H, Zha L, Fan J P, Yu J G, Xie W P, Yuan J Q, Chen K, Zhao S S, Chu W T, Chen Y T, Sun P C, Meng F B, Zhuo T, Zhao Y H, Li C J, He G H, Zhao Y L, Wang C C, Kavikishor P B, Pan R L, Paterson A H, Wang X Y, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet, 2019, 51: 865–876.
[28] Tang G Y, Xu P L, Li P X, Zhu J P, Chen G X, Shan L, Wan S B. Cloning and functional characterization of seed-specific LEC1A promoter from peanut (Arachis hypogaea L.). PLoS One, 2021, 16: e0242949.
[29] Liu H C, Zhu K Y, Tan C, Zhang J Q, Zhou J H, Jin L, Ma G Y, Zou Q C. Identification and characterization of PsDREB2 promoter involved in tissue-specific expression and abiotic stress response from Paeonia suffruticosa. PeerJ, 2019, 7: e7052.
[30] 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐 琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析. 作物学报, 2024, 50: 354–362.
Mao Y, Zheng M M, Mou C X, Xie W B, Tang Q. Function analysis of the promoter of natural antisense transcript cis-NATZmNAC48 in maize under osmotic stress. Acta Agron Sin, 2024, 50: 354–362 (in Chinese with English abstract).
[31] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用. 作物学报, 2022, 48: 2016–2027.
Zhu C Q, Wei Q Q, Xiang X J, Hu W J, Xu Q S, Cao X C, Zhu L F, Kong Y L, Liu J, Jin Q Y, Zhang J H. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice. Acta Agron Sin, 2022, 48: 2016–2027 (in Chinese with English abstract).
[32] 周定纬, 刘佳佳, 李培培, 马倩, 巩方平, 李忠峰, 马兴立, 张幸果, 殷冬梅. 外源MeJA对花生主要农艺性状和抗氧化酶活性的影响. 山东农业科学, 2020, 52(9): 29–34.
Zhou D W, Liu J J, Li P P, Ma Q, Gong F P, Li Z F, Ma X L, Zhang X G, Yin D M. Effects of exogenous MeJA on main agronomic characters and antioxidant enzyme activities of peanut. Shandong Agric Sci, 2020, 52(9): 29–34 (in Chinese with English abstract).
[33] Zhang Z Y, Zheng X X, Yang J, Messing J, Wu Y R. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc Natl Acad Sci USA, 2016, 113: 10842–10847.
[34] 王梦龙, 严维, 彭小群, 唐晓艳. 水稻胚乳特异性表达基因启动子的鉴定. 植物生理学报, 2022, 58: 1946–1960.
Wang M L, Yan W, Peng X Q, Tang X Y. Identification of rice endosperm-specific gene promoters. Acta Phytophysiol Sin, 2022, 58: 1946–1960 (in Chinese with English abstract).
[35] Li Q Y, Li L Q, Liu Y, Lyu Q, Zhang H, Zhu J, Li X J. Influence of TaGW2-6A on seed development in wheat by negatively regulating gibberellin synthesis. Plant Sci, 2017, 263: 226–235.
期刊简介
敬请关注 欢迎投稿
微信ID: zwxb66