摘要 Abstract
如前文所述,CLE小肽激素参与植物多种抗逆过程[16]。袁娜等[19]在2018年对棉属中二倍体棉种A1、A2、D5基因组和四倍体棉种AD1、AD2基因组对CLE基因家族成员进行全基因组鉴定,共鉴定到148个CLE基因,其中在陆地棉中鉴定到49个CLE基因;此外,高梦涛[20]也对棉属CLE基因家族进行了鉴定,其中在陆地棉全基因组鉴定到41个已注释的小肽基因,并对陆地棉GhCLE5基因调控拟南芥SAM的功能机制进行了研究。但目前为止,CLE基因是否参与调控棉花抗旱的生物学功能尚未见报道。本研究基于我们发布的陆地棉参考基因组[21],对陆地棉CLE基因家族成员进行了鉴定,鉴定到40个包含信号肽序列的分泌型CLE小肽编码基因;通过RNA-seq分析筛选出可能参与调控棉花抗旱的、根系特异表达的成员GhCLE13-D-2,并通过VIGS技术对其参与调控棉花抗旱的生物学功能进行验证。本研究为CLE小肽在植物抗逆方面的深入研究以及棉花种质创新提供了新的理论依据。
1 材料与方法
1.1 植物材料和试验所需材料
丙二醛(malonaldehyde, MDA)是膜脂过氧化最重要的产物之一,它的产生会进一步加剧细胞膜的损伤,其含量的多少与膜脂过氧化程度的高低密切相关,通过MDA含量可间接测定膜系统受损程度以及植物的抗逆性[33]。为了比较GhCLE13-D-2基因沉默株系和对照组叶片MDA含量,在干旱处理2周后,从正常水份处理组和干旱处理组的TRV2::GhCLE13和TRV2::00株系分别选取3株长势相当的植株上各取1片叶片,迅速放置于液氮中速冻。从液氮中取出样品,放研钵中研磨成粉末,取0.1 g放入2 mL离心管中,加入1 mL提取液,进行冰浴匀浆,然后放置离心机中,4℃、1223×g离心10 min,离心后取上清液200 μL至新的离心管,再加入300 μL工作液,95℃水浴30 min,期间打开酶标仪预热。将样品从水浴锅中取出后置冰上冷却5 min,再次加入离心机,25℃、1223×g离心10 min,最后分别在每个样本中取200 μL上清液至96孔酶标板,分别在酶标仪中532 nm和600 nm处读取吸光度值,并按照MDA含量(nmol g-1)=32.3×(532 nm吸光度-600 nm吸光度)/0.1 g的公式进行计算。试验设置3个生物学重复,用t检验方法进行显著性分析(P<0.05)。
2 结果与分析
2.1 GhCLE基因家族的鉴定
以拟南芥的AtCLE基因氨基酸序列为种子序列,经过BLAST比对、保守结构域分析和信号肽预测,去除不包含C-端保守结构域和N-端信号肽的序列,最终共鉴定到40个陆地棉GhCLE基因家族成员,蛋白质理化性质分析结果得出,除一条含多个CLE motif的序列长度为306个氨基酸外,其余多肽序列长度在74~131个氨基酸(表1)。
2.2 GhCLE基因序列结构、启动子顺式作用元件以及蛋白理化性质分析
通过对40个GhCLE基因的启动子区域顺式作用元件分析显示,GhCLE基因家族顺式作用元件众多,我们将其分为植物激素响应元件、胁迫响应元件、生长发育调控元件和光响应元件。其中,植物激素响应元件包含赤霉素、脱落酸、生长素、水杨酸和茉莉酸响应元件,说明GhCLE基因家族的表达可能与与植物体内各种激素的含量相关联;胁迫响应元件包含了低温胁迫响应、厌氧诱导、干旱胁迫响应和损伤响应,说明GhCLE基因家族可能参与了棉花多个抗胁迫的生理过程;生长发育调控元件包含了分生组织表达调控元件和生物节律调控元件,说明了GhCLE基因家族成员可能参与了棉花的分生组织发育,同时对棉花生长过程中的生物节律调控起着重要的作用;GhCLE基因家族每个成员的启动子区域都包含光响应元件,说明GhCLE基因家族成员的表达普遍受到了光的调控(图2)。
2.3 GhCLE基因家族系统发育分析
图3 GhCLE基因家族系统发育分析及聚类
A:GhCLE基因家族系统进化树;B:GhCLE基因家族各亚家族CLEmotif特征示意图。
2.4 GhCLE家族基因组织表达谱的构建以及抗旱功能基因的筛选
2.5 GhCLE13-D-2基因VIGS功能验证
3 讨论
棉花是一种比较耐旱的经济作物[34]。但近年来,全球气候的改变导致干旱的加剧,加之我国棉花主产区新疆淡水资源的匮乏[35],严重影响了我国棉花的总产量、质量以及产业发展[36-37]。因此,挖掘更多抗旱功能基因、培育抗旱性更加优良的棉花新材料和品种的需求迫在眉睫[38-39]。在以往的研究报道中通过基因工程克隆的抗旱基因,并通过转基因技术提高了棉花的抗旱性[40]。但目前关于小肽基因参与棉花抗干旱方面的研究少见报道。
4 结论
参考文献
[1] Murphy E, Smith S, De Smet I. Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. Plant Cell, 2012, 24: 3198–3217.
[2] Busch W, Benfey P. Information processing without brains the power of intercellular regulators in plants. Development, 2010, 137: 1215–1226.
[3] Pearce G, Strydom D, Johnson S, Aryan C. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science, 1991, 253: 895–897.
[4] Loivamäki M, Stührwohldt N, Deeken R, Steffens B, Roitsch T, Hedrich R, Saute M. A role for PSK signaling in wounding and microbial interactions in Arabidopsis. Physiol Plant, 2010, 139: 348–357.
[5] Amano Y, Tsubouchi H, Shinohara H, Matsubayashi Y. Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc Natl Acad Sci USA, 2007, 104: 18333–18338.
[6] Hu H Y, Wang M J, Ding Y H, Zhu S T, Tu L L, Zhang X L. Transcriptomic repertoires depict the initiation of lint and fuzz fibres in cotton (Gossypium hirsutum L.). Plant Biotechnol J, 2017, 16: 1002–1012.
[7] An Z C, Liu Y L, Li J, Zhang B W, Sun D Y, Sun Y. Regulation of the stability of RGF1 receptor by the ubiquitin-specific proteases UBP12/UBP13 is critical for root meristem maintenance. Proc Natl Acad Sci USA, 2018, 115: 1123–1128.
[8] He Y H, Chen S Y, Chen X Y, Xu Y P, Liang Y, Cai X Z. RALF22 promotes plant immunity and amplifies the Pep3 immune signal. J Integr Plant Biol, 2023, 65: 2519–2534.
[9] Zhong S, Li L, Wang Z J, Ge Z X, Li Q Y, Bleckmann A, Wang J Z, Song Z H, Shi Y H, Liu T X, Li L H, Zhou H B, Wang Y Y, Zhang L, Wu H M, Lai L H, Gu H Y, Dong J, Cheung A Y, Dresselhaus T, Qu L J. RALF peptide signaling controls the polytubey block in Arabidopsis. Science, 2022, 375: 290–296.
[10] Fletcher J C, Brand U, Running M P, Simon R, Meyerowitz E M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 1999, 283: 1911–1914.
[11] Brand U, Fletcher J C, Hobe M, Meyerowitz E M, Simon R. Dependence of stem cell Fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 2000, 289: 617–619.
[12] Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H. Dodeca-CLE Peptides as suppressors of plant stem cell differentiation. Science, 2006, 313: 842–845.
[13] Lei L, Gallagher J, Arevalo E D, Chen R, Skopelitis T, Wu Q Y, Madelaine B, Jackson D. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat Plants, 2021, 7: 287–294.
[14] Yang Y, Zhu K Y, Li H L, Han S Q, Meng Q W, Khan S U, Fan C C, Xie K B, Zhou Y M. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol J, 2017, 16: 1322–1355.
[15] Guo X L, Chronis D, Torre C M D L, Smeda J, Wang X H, Mitchum M G. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors. Plant Biotechnol J, 2015, 13: 801–810.
[16] Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 2018, 556: 235–238.
[17] Lehman A M. Assessing the Impacts of Gene Flow Between Endemic Hawaiian Cotton, Gossypium tomentosum, and Two Commercial Cotton Species. MS Thesis of University of Hawaii at Manoa, Hawaii, USA, 2012.
[18] Passioura J. The drought environment: physical, biological and agricultural perspectives. J Exp Bot, 2007, 58: 113–117.
[19] 袁娜, 李阳, 杨郁文, 张保龙, 杜建厂. 棉花CLE多肽家族的全基因组鉴定与生物信息学分析. 棉花学报, 2019, 31: 263–281.
Yuan N, Li Y, Yang Y W, Zhang B L, Du J C. Genome-wide identification and characterization of CLE family in cotton (Gossypium spp.). Cotton
Sci, 2019, 31: 263–281 (in
Chinese with English abstract).
[20] 高梦涛. 棉属CLE基因家族全基因组鉴定与GhCLE5功能机制初步研究. 南京农业大学硕士学位论文, 江苏南京, 2021.
Gao M T. Identification and Functional Analysis of Small Peptide CLE and RALF in Cotton. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2021 (in Chinese with English abstract).
[21] Wang M, Tu L L, Yuan D, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, Ye Z X, Huang H, Yan F L, Ma Y Z, Zhang L, Liu M, You J Q, Yang Y C, Liu Z P, Huang F, Li B Q, Qiu P, Zhang Q H, Zhu L F, Jin S X, Yang X Y, Min L, Li G L, Chen L L, Zheng H K, Lindsey K, Lin Z X, Udall J A, Zhang X L. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51: 224–229.
[22] Kinoshita A, Nakamura Y, Sasaki E, Kyozuka J, Fukuda H, Shinichiro, S A. Gain-of-Function phenotypes of chemically synthetic CLAVATA3/ESR-Related (CLE) peptides in Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol, 2007, 48: 1821–1825.
[23] Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J Mol Biol, 1990, 215: 403–410.
[24] Timothy L B, James J, Charles E G, William S N. The MEME suite. Nucleic Acids Res, 2015, 43: W39–W49.
[25] Almagro A J J, Tsirigos K D, Sønderby C K, Petersen T N, Winther O, Brunak S, HeijneG, Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol, 2019, 37: 420–423.
[26] 顾家琦, 朱福慧, 谢沛豪, 孟庆营, 郑颖, 张献龙, 袁道军. 棉属光敏色素PHY基因家族的全基因组鉴定与驯化选择分析. 植物学报, 2024, 59:
34–53.
Gu J Q, Zhu F H, Xie P H, Meng Q Y, Zheng Y, Zhang X L, Yuan D J. Genome-wide identification
and domestication analysis of the phytochrome PHY gene family
in Gossypium. Chin Bull Bot, 2024, 59: 34–53.
[27] Chen C J, Chen H, Zhang Y, Tomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194–1202.
[28] Min B Q, Schmidt H A, Chernomor O, Schrempf D, Woodhams M D, Haseseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol, 2020, 37: 1530–1534.
[29] Subramanian B, Gao S H, Lercher M J, Hu S N, Chen W H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res, 2019, 47: W270–W275.
[30] Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019, 37: 907–915.
[31] Shumate A, Wong G, Pertea G, Pertra M. Improved transcriptome assembly using a hybrid of long and short reads with StringTie. PLoS Comput Biol, 2022, 18: e1009730.
[32] Ito K, Murphy D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometr Syst Pharmacol, 2013, 2: e79.
[33] 白志英, 李存东, 吴同燕, 孙红春. 干旱胁迫条件下小麦旗叶酶活性和丙二醛含量的染色体定位. 植物遗传资源学报, 2009, 10: 255–261.
Bai Z Y, Li C D, Wu T Y, Sun H C. Chromosomal control on flag
leaf enzyme activity and MDA content under drought stress in wheat (Triticum aestivum L.). J Plant Genet
Resour, 2009, 10: 255–261.
[34] 李娜. 气候变化对棉花生长和产量的影响. 西北农林科技大学博士学位论文, 陕西西安, 2022.
Li N. Effects of Climate Change on Cotton Growth and Yield. PhD Dissertation of Northwest A&F University, Xi’an, Shaanxi, China, 2022 (in
Chinese with English abstract).
[35] Du T S, Kang S Z, Zhang J H, Li F S. Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China. Agric Water Manag, 2006, 84: 41–52.
[36] Rahman M T, Rana S M S, Zahed M A, Lee S H, Yoon E S, Park J Y. Metal-organic framework-derived nanoporous carbon incorporated nanofibers for high-performance triboelectric nanogenerators and self-powered sensors. Nano Energy, 2022, 94: 106921.
[37] Chastain D R, Snider J L, Choinski J S, Collins G D, Perry C D, Whitaker J, Timothy L G, Sorensen R B, Iersel M, Byrd S A, Porter W. Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum. J Plant Physiol, 2016, 199: 18–28.
[38] Unlu M, Kanber R, Koc D L, Tekin S, Kapur B. Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment. Agric Water Manag, 2011, 98: 597–605.
[39] Ullah A, Sun H, Yang X Y, Zhang X L. Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J, 2017, 15: 271–284.
[40] Bergonci T, Ribeiro B, Ceciliato P H O, Guerrero-Abad J C, Silva-Filho M C, Moura D S. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation. J Exp Bot, 2014, 65: 2219–2230.
[41] Suzaki T, Yoshida A, Hirano H Y. Functional diversification of CLAVATA3-Related CLE proteins in meristem maintenance in rice. Plant Cell, 2008, 20: 2049–2058.
[42] Han H B, Zhang G H, Wu M Y, Wang G D. Identification and characterization of the Populus trichocarpa CLE family. BMC Genomics, 2016, 17: 174.
[43] Fletcher J C. Recent advances in Arabidopsis CLE peptide signaling. Trends Plant Sci, 2020, 25: 1005–1016.
本文已在中国知网网络首发,网址:
https://link.cnki.net/urlid/11.1809.S.20240902.1421.016
期刊简介
敬请关注 欢迎投稿
微信ID: zwxb66