《轴承》2024年 第9期
张益林,沈意平,张亚宾,等.孔隙率对风电滑动轴承激光熔覆涂层摩擦磨损性能的影响[J].轴承,2024(9):79-87.
点击文后“阅读原文”下载全文
孔隙率对风电滑动轴承激光熔覆涂层摩擦磨损性能的影响
张益林 1,2 沈意平 1张亚宾 3卫芬 1,2鲁学良 3
(1. 湖南科技大学,机械设备健康维护湖南省重点实验室,湖南 湘潭 411201;2. 湖南科技大学,机电工程学院,湖南 湘潭 411201;3. 湖南崇德科技股份有限公司,湖南 湘潭 411101 )
DOI:10.19533/j.issn1000-3762.2024.09.012
1 激光熔覆涂层的制备及试验方法
1.1 涂层的制备及孔隙率表征
1.2 试验方法
表1 摩擦副材料性能参数Tab.1 Material performance parameters of friction pair
, | (1) |
2 摩擦磨损试验结果分析
2.1 磨损微观形貌特征
2.2 维氏硬度
2.3 摩擦系数
, | (2) |
表2 CuSn12Ni2激光熔覆涂层摩擦系数平均值与标准差Tab.2 Average value and standard deviation of friction coefficient of CuSn12Ni2 laser cladding coating
2.4 磨损形貌
2.5 磨损率
3 球-平面摩擦副仿真模拟
3.1 摩擦副接触模型
3.2 仿真结果
4 结论
1. 陈奇,张凯,朱杰,等.风电滑动轴承设计与性能检测技术发展现状[J].轴承, 2023(6):14-19.
2. ZHU L D,XUE P S,LAN Q,et al.Recent research and development status of laser cladding:a review[J].Optics & Laser Technology,2021,138(3):106915.
3. HALDAR B,SAHA P.Identifying defects and problems in laser cladding and suggestions of some remedies for the same[J].Materials Today:Proceedings,2018,5(5):13090-13101.
4. 王权,刘秀波,刘庆帅,等.45#钢激光熔覆Ni60/Cu自润滑复合涂层组织演变及摩擦学性能[J].中国表面工程,2022,35(6):232-243,256.
5. SHAO L F,GE Y,KONG D J.Effect of MoS2 mass fraction on microstructure and tribological characteristics of laser cladded Cu-10Al coating[J].Surfaces and Interfaces,2022,28:101599.
6. DAS A K. Effect of solid lubricant addition in coating produced by laser cladding process:a review[J]. Materials Today:Proceedings, 2022, 56:1274-1280.
7. QUAZI M M,FAZAL M A,HASEEB A S M A,et al.A review to the laser cladding of self-lubricating composite coatings[J].Lasers in Manufacturing and Materials Processing,2016,3(2):67-99.
8. 赵月红,战再吉,吕相哲,等.激光熔覆ZrB2-SiC增强Cu基复合涂层的微观结构与摩擦学性能[J].稀有金属材料与工程, 2023, 52(1):267-273.
9. 李杰,顾佳玲.Cu基粉末冶金摩擦材料激光熔覆及摩擦特性研究[J].热加工工艺,2024,53(2):140-144,148.
10. 李艳苗,肖来荣,翟鹏远,等.铜表面激光熔覆制备Ni-Cu-Mo覆层的显微组织及其摩擦磨损性能[J].中国有色金属学报,2023,33(5):1502-1513.
11. BIRYUKOV V P,BAZLOVA T A.Laser cladding of copper alloys on steel[J].Physics of Atomic Nuclei,2019,82(11):1450-1453.
12. NGHIA T V,YANG S,ANH P H. Microstructure and properties of Cu/TiB2 wear resistance composite coating on H13 steel prepared by in-situ laser cladding[J]. Optics & Laser Technology, 2018, 108:480-486.
13. YUE T Y,ABDEL WAHAB M. Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes[J].Tribology International,2017,107:274-282.
14. 李玲,康乐,阮晓光,等.不同加载条件下柱面/平面微动磨损有限元分析[J].机械科学与技术,2018,37(12):1854-1861.
15. RAMÍREZ T D L M,CRUZ I H,RUIZ M A D,et al.Numerical model of ultra-high molecular weight polyethylene abrasive wear tests[J].Modeling and Numerical Simulation of Material Science,2020,10(1):1-14.
16. MARTÍNEZ-LONDOÑO J C,MARTÍNEZ-TRINIDAD J,HERNÁNDEZ-FERNÁNDEZ A,et al.Finite element analysis on AISI 316L stainless steel exposed to ball-on-flat dry sliding wear test[J].Transactions of the Indian Institute of Metals,2023,76(1):97-106.
17. BOSE K K,PENCHALIAH R.3-D FEM wear prediction of brass sliding against bearing steel using constant contact pressure approximation technique[J].Tribology Online,2019,14(4):194-207.
18. 吕景儒,殷玉枫,张锦,等.基于C17200与34CrNiMo6材料的摩擦磨损特性与数值模拟研究[J].表面技术,2023,52(4):172-183.
19. Standard practice for determining the inclusion or second-phase constituent content of metals by automatic image analysis:ASTM E1245-03:2008 [S].
20. LU X L, ZHANG Y B, CHEN Y, et al. Designing and qualification of sliding bearings for planetary gears in wind turbine gearboxes[C]∥ CWD 2023 Conference, 2023.
Effect of Porosity on Friction and Wear Properties of Laser Cladding Coatings on Sliding Bearings for Wind Turbines
作者简介:张益林(1998—),男,硕士研究生,主要研究方向为风电滑动轴承的摩擦润滑,E-mail:21020301040@mail.hnust.edu.cn。
通讯作者:鲁学良(1986—),男,高级工程师,主要研究方向为轴承与转子动力学,E-mail:luxl@hnsund.com。
基金信息: 湖南省重点研发计划资助项目(2023GK2026);湖南省自然科学基金青年资助项目(2023JJ40289)
中图分类号: TH133.31;TM315
文章编号:1000-3762(2024)09-0079-09
文献标识码: B
收稿日期:2023-12-01
修回日期:2024-04-10
出版日期:2024-09-05
网刊发布日期:2024-09-02
本文编辑:侯万果