《轴承》2024年 第9期
吴九牛,翟广宇,李德仓,等.基于动态权重优化的风电机组齿轮箱轴承温度预测模型[J].轴承,2024(9):100-107.
基于动态权重优化的风电机组
齿轮箱轴承温度预测模型
吴九牛 1 翟广宇 2李德仓 3高德成 1蒋维栋 1
(1. 甘肃省计量研究院,兰州 730050; 2. 兰州理工大学 经济管理学院,兰州 730050; 3. 兰州交通大学 机电技术研究所,兰州 730070 )
1 相关理论基础
1.1 灰色预测GM(1,N)
, | (1) |
, | (2) |
,;,。 |
, | (3) |
, | (4) |
, | (5) |
。 |
, | (6) |
=。 | (7) |
1.2 BP神经网络模型
, | (8) |
, | (9) |
, | (10) |
, | (11) |
, | (12) |
, | (13) |
, | (14) |
1.3 PSO-SVR模型
, | (15) |
,,;, |
, | (16) |
, | (17) |
2 组合模型研究
2.1 模型构建
, | (18) |
, | (19) |
。 | (20) |
2.2 模型评价指标
, | (21) |
, | (22) |
, | (23) |
, | (24) |
2.3 齿轮箱轴承温度异常报警机制
, | (25) |
, | (26) |
3 实例验证及分析
3.1 样本数据的准备及预处理
表1 输入变量与轴承温度的灰色关联度Tab.1 Grey correlation degree between input variables and bearing temperature
, | (27) |
3.2 模型结构及参数优化
表2 部分权重系数值Tab.2 Partial weight coefficient values
3.3 模型预测结果及对比分析
表3 模型评价指标对比Tab.3 Comparison of evaluation indexes of model
4 结束语
1. 周恒宇,周建星,温建民,等.风电轴承失效模式研究进展[J].轴承,2023(6):102-114.
2. 陈辉,黄伟,尚艳涛,等.大功率风电齿轮箱轴承试验和检测技术[J].轴承,2023(6):121-126.
3. BHARDWAJ U,TEIXEIRA A P,SOARES C G.Reliability prediction of an offshore wind turbine gearbox[J].Renewable Energy,2019,141:693-706.
4. 尹诗,侯国莲,迟岩,等.风电机组发电机前轴承健康度预测方法及实现[J].系统仿真学报,2021,33(6):1323-1333.
5. TCHAKOUA P,WAMKEUE R,OUHROUCHE M,et al.Wind turbine condition monitoring:state-of-the-art review,new trends,and future challenges[J].Energies,2014,7(4):2595-2630.
6. 金晓航,孙毅,单继宏,等.风力发电机组故障诊断与预测技术研究综述[J].仪器仪表学报,2017,38(5):1041-1053.
7. 刘帅,刘长良,曾华清.基于核极限学习机的风电机组齿轮箱故障预警研究[J].中国测试,2019,45(2):121-127.
8. HAMEED Z,HONG Y S,CHO Y M,et al.Condition monitoring and fault detection of wind turbines and related algorithms:a review[J].Renewable and Sustainable Energy Reviews,2009,13(1):1-39.
9. 贾晨鹤,陈观慈,王燕霜,等.风电机组主轴用双列圆锥滚子轴承的热分析[J].轴承,2023(6):43-50,58.
10. LIU Z P,ZHANG L.A review of failure modes,condition monitoring and fault diagnosis methods for large-scale wind turbine bearings[J].Measurement,2020,149:107002.
11. 孟建军,潘彦龙,陈晓强,等.基于偏离度优化的高速列车轴箱轴承温度预测方法[J].制造技术与机床,2021(9):129-133,137.
12. 刘旭斌,郭鹏,林峰.基于深度学习与SPRT的风电机组齿轮箱轴承状态监测[J].动力工程学报,2020,40(11):889-896.
13. KUSIAK A,VERMA A.Analyzing bearing faults in wind turbines:a data-mining approach[J].Renewable Energy,2012,48:110-116.
14. YAMPIKULSAKUL N,BYON E,HUANG S,et al.Condition monitoring of wind power system with nonparametric regression analysis[J].IEEE Transactions on Energy Conversion,2014,29(2):288-299.
15. 李大中,常城,许炳坤.基于样本优化的风电机组齿轮箱轴承温度预测[J].系统仿真学报,2017,29(2):374-380.
16. 贾依达尔·热孜别克,袁逸萍,孙文磊,等.根据PCA-GA-Elman的风机齿轮箱轴承温度预测[J].机械科学与技术,2020,39(11):1671-1675.
17. 何群,王红,江国乾,等.基于相关主成分分析和极限学习机的风电机组主轴承状态监测研究[J].计量学报,2018,39(1):89-93.
18. 王超,李大中.基于LSTM网络的风机齿轮箱轴承故障预警[J].电力科学与工程,2020,36(9):40-45.
19. 郑玉巧,魏剑峰,朱凯,等.风力机主轴承故障监测方法[J].振动、测试与诊断,2021,41(2):341-347,415.
20. 孟建军,潘彦龙,陈晓强,等.基于灰色BP神经网络的高速列车轴箱轴承温度预测方法[J].轴承,2022(4):77-82.
21. YIN K D,GENG Y,LI X M.Improved grey prediction model based on exponential grey action quantity[J].Journal of Systems Engineering and Electronics,2018,29(3):560-570.
22. 林涛,刘刚,蔡睿琪,等.基于轴承温度的风机齿轮箱故障预警研究[J].可再生能源,2018,36(12):1877-1882.
23. 陈龙龙,李凌.基于机器学习的湿化仪温度预测建模与仿真[J].工业仪表与自动化装置,2022(2):56-61,115.
24. CHENG Y,LIU Q Y,WANG J,et al.Distributed fault detection for wireless sensor networks based on support vector regression[J].Wireless Communications and Mobile Computing,2018,2018:4349795.
25. 詹明强,陈波,刘庭赫,等.基于变权重组合预测模型的混凝土坝变形预测研究[J].水电能源科学,2022,40(9):115-119.
26. 曹现刚,雷卓,罗璇,等.滚动轴承自适应组合状态预测方法研究[J].机床与液压,2022,50(4):162-166.
27. 战欣,刘卓娅.基于PSO-SES-BPNN算法的液压系统故障诊断模型[J].兵器装备工程学报,2023,44(4):172-178.
Temperature Prediction Model for Wind Turbine Gearbox Bearings Based on Dynamic Weight Optimization
WU Jiuniu 1 ZHAI Guangyu 2LI Decang 3GAO Decheng 1JIANG Weidong 1
Abstract: In order to accurately predict the temperature state of wind turbine gearbox bearings, a combined prediction model based on dynamic weight optimization is proposed by combining grey prediction GM(1, N) model, BP neural network model and support vector regression model. Through theoretical analysis of three prediction models, the reasonable structure is selected for each model, and the model parameters are optimized by particle swarm algorithm. After preprocessing the original temperature data of the bearings, the dynamic weight coefficient of each single model is determined by exponential smoothing method, and the combined model for temperature of the bearings is established. The residuals of predicted temperature of the bearings are analyzed statistically by sliding window method, and the operating state of the bearings is judged. The research results demonstrate that the evaluation indexes of combined model are all better than those of single prediction model, with a determination coefficient of 0.977 2, the prediction effect is more stable and accurate, and the temperature change of the bearings can be monitored in time.
作者简介:吴九牛(1986—),男,高级工程师,工学硕士,主要研究方向为设备计量及故障诊断与健康管理,E-mail:278661120@qq.com
作者简介:翟广宇(1978—),男,副教授,硕士生导师,理学博士,主要研究方向为大数据技术、数据挖掘、智能决策等。
基金信息: 国家自然科学基金资助项目(71861026)
中图分类号: TH133.33; TH17; TK83
文章编号:1000-3762(2024)09-0100-08
文献标识码: B
收稿日期:2023-05-22
修回日期:2024-03-21
出版日期:2024-09-05
网刊发布日期:2024-09-02
本文编辑:张旭