神经网络通过测量数据刻画量子系统

学术   科技   2024-11-29 10:03   北京  

|作者:吴亚东

(上海交通大学约翰·霍普克罗夫特计算机科学中心)

本文选自《物理》2024年第11期



在日新月异的量子计算与量子信息领域,如何“读懂”量子系统内存储的量子信息成为科学家们关注的焦点。可以想象,想要准确了解一个复杂的量子系统,就像从拼图的碎片中复原一幅巨大的全景图。然而,量子系统的“全景图”因为其信息量的爆炸,往往超越了传统实验方法的能力。




01  量子系统表征及其神经网络算法



量子系统的表征就是在实验中通过测量获取对它们状态的描述。对于小规模量子系统,通常的方法是量子态层析,此过程类似于从低维投影重建高维物体的信息。但是,随着量子比特数的增加,完整表征任意一个未知量子态所需要的采样量指数增加,不仅实验耗费的时间过于慢长,得到的数据还可能“算不过来”。因此利用量子态层析来完整表征中型、大型规模量子系统几乎是不可能的。


神经网络为量子态的刻画与表征提供了强大的工具,能被用来紧凑地表示复杂结构的量子态[1]。过去几年,各类神经网络模型不仅被用于量子态层析[2,3],即完整重建量子态波函数或密度矩阵的信息,也已被成功应用于通过测量来预测量子系统的多种物理性质,例如预测量子保真度和量子纠缠等重要物理量[4,5],以及识别不同的量子物相[6,7]。近两年,随机测量成为实验表征量子系统的高效手段[8]。在随机测量中,实验者对未知量子态执行多次量子测量,并且每次随机挑选不同的测量“视角”。这个过程类似于拍摄全景照片:人们随机选择从不同角度拍摄大量照片,再把它们拼接起来得到一幅完整的画面(图1)。随机测量已被成功应用于高效表征量子系统并预测量子系统的物理性质[8—10]


图1 从量子测量数据学习量子态表示(a),类比于从二维快照学习三维场景的表示(b)[12]


面对实验表征可拓展量子系统的挑战,我们提出了一系列神经网络算法,从量子态的随机采样的测量数据中学习该量子态的表示,并利用此表示预测未来测量的输出概率分布[11],或者预测两个量子态之间的近似度[12]。前者的灵感来源于利用二维快照学习三维场景表征的神经网络算法[13],而后者类似于在经典机器学习中,通过模糊头像照片中的细微差别,判断是否为同一个人[14]。有趣的是,这个学习过程并不依赖任何先验的物理知识,而完全由数据驱动,神经网络似乎在“模仿”人类物理学家,仅从实验观测数据中学习重建物理知识[15]


除此之外,近两年深度学习被广泛应用于预测量子系统的性质。例如,D. Koutny等人[5]利用神经网络算法通过不完整的测量数据预测量子纠缠的程度。又例如,Y. Qian等人[4]利用多模态神经网络算法整合量子测量信息和量子线路的信息,并预测不同平台量子线路输出态之间的保真度。再例如,H. X. Wang等人[16]利用条件生成模型通过哈密顿量的参数来预测其对应基态的量子性质。




02  多任务神经网络算法



研究多体量子系统的一大难点在于,随着系统规模扩大,所需测量数量剧增。面对此困境,我们提出了多任务神经网络算法来学习和表征多体量子系统并预测其性质[17]多任务学习的原理和人类的大脑相似,可以“多线程”处理多项任务[18]例如,在语言处理中,模型可以同时进行翻译、对话和语义分析。而在量子系统中,多任务学习可以用少量的测量数据预测量子系统的多种特性。


通过这种方法,我们设计的神经网络模型利用相邻量子比特的测量数据预测量子态的全局特性(图2)。这种“短程关联”特性类似于在一排长队伍中传递信息:每个人仅与邻近的人交互。这样,量子系统的整体性质可以在不测量全体的情况下通过少数相邻粒子的局部信息推测出来。


图2 多任务神经网络预测量子性质的流程图[17]


研究结果表明,与传统的单任务学习模型相比,多任务学习模型对物理性质的预测准度更高。数值模拟的结果表明,对于短程关联的量子态,多任务神经网络模型可以通过短程关联来预测全局性质,如序参量[19],并能够区分单任务网络无法区分的不同的对称保护拓扑相。针对耦合系数交替(JJ′ 之间交替)变换的XXZ模型基态,神经网络的预测结果如图(3)所示。我们通过降维对神经网络生成的量子态表示进行了可视化,图中每个数据点代表一个不同哈密顿量参数的基态。结果表明,多任务网络能够有效聚类出拓扑相和平凡相(图3(a)),而单任务网络则难以区分这两类相(图3(b))。此外,图3(c)展示了基于量子态表示对多体拓扑不变量的预测,而图3(d)展示了其与真实值的误差,预测精度仅在相变区域(图3(c)不同颜色交接处)有所下降,原因是相变附近量子态不再是短程关联。


图3 键交替XXZ模型基态量子态表示的二维投影(由t-SNE算法得到),以及神经网络对多体拓扑不变量的预测   (a)用于预测自旋关联和互信息的量子态表示;(b)用于预测自旋关联的量子态表示,其中每个数据点的颜色表示的是基态多体拓扑不变量的真实值;(c)神经网络对所有参数对应的基态多体拓扑不变量的预测值,并标出了60个基准态的真实值(灰色方块表示);(d)预测值与真实值的绝对值误差,其中颜色越浅表示差异越小,颜色越深表示差异越大[17]


该神经网络模型成功的关键特性是其能够生成整合了多种物理性质信息的量子态表示,此过程类似于整合从不同位置和角度拍摄的照片,从而得到一个完整的画面。令人惊讶的是,这些量子态表示似乎还能捕捉到训练中未打标签的物理性质。这一特性使得该模型能够对不同物相进行无监督的分类,不仅适用于训练过的哈密顿量模型的基态,还可以实现分布外泛化,例如区分由随机量子线路生成的量子态所对应的拓扑相和平凡相。模型还展示出从小规模量子系统泛化到大规模量子系统的能力,这使得它成为探索中等规模量子系统的有效工具。该算法仅利用探测短程关联的随机泡利测量,显著减少了实验中所需的测量设置数量。在可测的泡利集合受限的情况下,该算法在区分不同量子物相上的表现优于基于经典阴影的核主成分分析算法[20]




03  结语与展望



对于崭新的、真实相图仍然未知的量子系统,利用机器学习以无监督的方式发现相图将是一项重大的挑战。通过将神经网络算法与一致性检验相结合,或许可以解决这一难题。我们在这方面的系列研究不仅旨在通过机器学习工具实现更高效的量子系统表征与刻画,更希望推动量子信息科学与机器学习之间的学科交叉发展,带来新的视角和进展。


参考文献

[1] Carleo GTroyer M. Science2017355602

[2] Torlai GMazzola GCarrasquilla J et al. Nat. Phys.201814447

[3] Carrasquilla J Torlai G Melko R G et al. Nat. Mach. Intell. 20191155

[4] Qian YDu Y XHe Z L et al. Phys. Rev. Lett.2024133130601

[5] Koutny DGinés LMoczała-Dusanowska M et al. Sci. Adv.20239eadd7131

[6] Carrasquilla JMelko R G. Nat. Phys.201713431

[7] Van Nieuwenburg E PLiu Y HHuber S D. Nat. Phys.201713435

[8] Elben AFlammia S THuang H Y et al. Nat. Rev. Phys.202359

[9] Huang H YKueng RPreskill J. Nat. Phys.2020161050

[10] Elben AYu J LZhu G Y et al. Sci. Adv.20206eaaz3666

[11] Zhu YWu Y DBai G et al. Nat. Commun.2022136222

[12] Wu Y DZhu YBai G et al. Phys. Rev. Lett.2023130210601

[13] Eslami S ARezende D JBesse F et al. Science20183601204

[14] Schroff FKalenichenko DPhilbin J. FacenetA unified embedding for face recog nition and clustering. InCVPR(2015)pp.815823

[15] Iten RMetger TWilming H et al. Phys. Rev. Lett.2020124010508

[16] Wang H XWeber MIzaac J et al. 2022arXiv2211.16943

[17] Wu Y DZhu YWang Y XChiribella G. Nat. Commun.2024158796

[18] Zhang YYang Q. IEEE Trans. Knowl. Data Eng.2021345586

[19] Pollmann FTurner A M. Phys. Rev. B201286125441

[20] Huang H Y Kueng R Torlai G et al. Science 2022 377 eabk3333

(参考文献可上下滑动查看)






//
《物理》50年精选文章


中子弹是怎么一回事?| 《物理》50年精选文章

晶体缺陷研究的历史回顾 | 《物理》50年精选文章

相变和临界现象(Ⅰ) | 《物理》50年精选文章

相变和临界现象(Ⅱ) | 《物理》50年精选文章

相变和临界现象(Ⅲ) | 《物理》50年精选文章

凝聚态物理的回顾与展望 |《物理》50年精选文章

声学与海洋开发 |《物理》50年精选文章

模型在物理学发展中的作用 |《物理》50年精选文章

我对吴有训、叶企孙、萨本栋先生的点滴回忆 | 《物理》50年精选文章

国立西南联合大学物理系——抗日战争时期中国物理学界的一支奇葩(Ⅰ) | 《物理》50年精选文章

国立西南联合大学物理系——抗日战争时期中国物理学界的一支奇葩(Ⅱ) | 《物理》50年精选文章

原子核裂变的发现:历史与教训——纪念原子核裂变现象发现60周年 | 《物理》50年精选文章

回顾与展望——纪念量子论诞生100周年 | 《物理》50年精选文章

我的研究生涯——黄昆 | 《物理》50年精选文章

中国理论物理学家与生物学家结合的典范——回顾汤佩松和王竹溪先生对植物细胞水分关系研究的历史性贡献(上) |《物理》50年精选文章

中国理论物理学家与生物学家结合的典范——回顾汤佩松和王竹溪先生对植物细胞水分关系研究的历史性贡献(下) |《物理》50年精选文章

为了忘却的怀念——回忆晚年的叶企孙 | 《物理》50年精选文章

从分子生物学的历程看学科交叉——纪念金螺旋论文发表50周年 | 《物理》50年精选文章

美丽是可以表述的——描述花卉形态的数理方程 | 《物理》50年精选文章

爱因斯坦:邮票上的画传 | 《物理》50年精选文章

趣谈球类运动的物理 | 《物理》50年精选文章

转瞬九十载 |《物理》50年精选文章

一本培养了几代物理学家的经典著作 ——评《晶格动力学理论》 |《物理》50年精选文章

朗道百年 |《物理》50年精选文章

以天之语,解物之道 |《物理》50年精选文章

软物质物理——物理学的新学科 |《物理》50年精选文章

宇宙学这80年 |《物理》50年精选文章

熵非商——the Myth of Entropy |《物理》50年精选文章

物理学中的演生现象 |《物理》50年精选文章

普渡琐记——从2010年诺贝尔化学奖谈起 |《物理》50年精选文章

我的学习与研究经历 | 《物理》50年精选文章

天气预报——由经验到物理数学理论和超级计算 | 《物理》50年精选文章

纪念Bohr的《伟大的三部曲》发表100周年暨北京大学物理专业建系100周年 | 《物理》50年精选文章

同步辐射历史及现状 |《物理》50年精选文章

麦克斯韦方程和规范理论的观念起源 |《物理》50年精选文章

空间科学——探索与发现之源 | 《物理》50年精选文章

麦克斯韦方程组的建立及其作用 |《物理》50年精选文章

凝聚态材料中的拓扑相与拓扑相变——2016年诺贝尔物理学奖解读 |《物理》50年精选文章

我所熟悉的几位中国物理学大师 |《物理》50年精选文章

量子力学诠释问题 |《物理》50年精选文章

高温超导研究面临的挑战 |《物理》50年精选文章

非常规超导体及其物性 | 《物理》50年精选文章

真空不空 | 《物理》50年精选文章

通用量子计算机和容错量子计算——概念、现状和展望 | 《物理》50年精选文章

谈书说人之一:《理论物理学教程》是怎样写成的?| 《物理》50年精选文章

奋斗 机遇 物理 |《物理》50年精选文章

关于量子力学的基本原理 |《物理》50年精选文章

时空奇点和黑洞 ——2020年诺贝尔物理学奖解读 |《物理》50年精选文章

凝聚态物理学的新篇章——超越朗道范式的拓扑量子物态 | 《物理》50年精选文章

物理学思维的艺术 | 《物理》50年精选文章

对于麦克斯韦方程组,洛伦兹变换的低速极限是伽利略变换吗?| 《物理》50年精选文章

杨振宁先生的研究品味和风格及其对培育杰出人才的启示 | 《物理》50年精选文章

庞加莱的狭义相对论之一:洛伦兹群的发现  | 《物理》50年精选文章








中国物理学会期刊网
中国物理学会期刊网(www.cpsjournals.cn)是我国最权威的物理学综合信息网站,有物理期刊集群、精品报告视频、热点专题网页、海内外新闻、学术讲座,会议展览培训、人物访谈等栏目,是为物理学习和工作者提供一站式信息服务的公众平台。
 最新文章