论文速递 | 空间变异土边坡几何参数对微型桩加固边坡可靠性的影响

文摘   2025-01-03 19:00   上海  
The influence of slope geometric parameters on the reliability of slope reinforced by micro-piles in spatially variable soils

空间变异土边坡几何参数对微型桩加固边坡可靠性的影响

引用格式 | Cited by
Wang YK, Shang HW, Wan YK, Chen YY, 2025. The influence of slope geometric parameters on the reliability of slope reinforced by micro-piles in spatially variable soils. Probabilistic Engineering Mechanics, 79: 103719.
DOI: 10.1016/j.probengmech.2024.103719
摘要 | Abstract
目前,土壤空间变异性和边坡几何参数对微型桩加固边坡可靠性的综合影响尚不清楚。为评价边坡几何参数对微型桩加固边坡可靠性的影响,提出了考虑土体强度参数空间变异性的可靠度计算程序。将有效微型桩侧压公式与简化 Bishop 法结合,给出了微型桩加固边坡的极限平衡计算方法。采用 Karhunen-Loève (KL) 展开方法生成随机场。采用蒙特卡罗模拟 (
Monte Carlo simulation, MCS) 计算边坡失效概率和可靠性指标。研究了不同加固参数和随机参数对微型桩加固边坡平均安全系数和可靠性的影响,并分析了边坡几何参数对微型桩加固边坡可靠性的影响。结果表明,微型桩加固有效提高了边坡稳定性。加固后,可靠性指标受边坡几何参数变化的影响较小。与降低边坡高度相比,减小坡比更能有效保证边坡可靠性。当微型桩设置在坡脚附近时,加固效率最高。随坡比增大,桩长变化对可靠性指标的影响增大。各随机参数对边坡可靠性影响不同,其中 L_v 影响更为显着。随机参数对微型桩加固边坡可靠性指标和安全系数的影响在不同几何参数下基本一致。
关键词微型桩加固边坡, 可靠性分析, 极限平衡法, Karhunen-Loève 展开方法, 蒙特卡罗模拟
Currently, the combined effects of soil spatial variability and slope geometric parameters on the reliability of micro-pile reinforced slopes remain unclear. To evaluate the influence of slope geometric parameters on the reliability of micro-pile reinforced slope, a reliability calculation program considering the spatial variability of soil strength parameters was proposed in this study. By combining the effective micro-pile side pressure formula with the simplified Bishop method, the limit equilibrium calculation method for micro-pile reinforced slope was obtained. The Karhunen–Loève (K-L) expansion method was employed to generate random fields. The failure probability and reliability index of the slope were calculated by Monte Carlo simulation (MCS). The effects of different reinforcement parameters and random parameters on the mean safety factor and reliability of micro-pile reinforced slope were studied, and the influence of slope geometric parameters on the reliability of micro-pile reinforced slope was analyzed. The results indicate that the stability of the slope is effectively improved by micro-pile reinforcement. After reinforcement, the reliability index is less affected by the change of slope geometric parameters. Compared to reducing the slope height, decreasing the slope ratio can more effectively ensure the enhancement of the slope's reliability. The reinforcement efficiency is the highest when the micro-pile is set near the foot of the slope. With the increase of slope ratio, the influence of the change of pile length on the reliability index increases. The influence of each random parameter on the reliability of the slope is different, and the influence of Lv is more significant. The influence of random parameters on the reliability index and safety factor of micro-pile reinforced slopes is essentially consistent across different geometric parameters.
KeywordsSlopes reinforced by micro-piles; Reliability analysis; Limit equilibrium method; K-L expansion method; Monte Carlo simulation.
创新点 | Highlights
  • 提出了一类微型桩加固边坡可靠性方法

  • 考虑了边坡几何形状和土体强度空间变异性

  • 给出了微型桩加固边坡的极限平衡计算方法

  • 采用 Karhunen-Loève 级数展开方法生成土体强度参数随机场
  • 通过蒙特卡罗模拟计算边坡可靠性指标

  • A reliability method of micro-pile reinforced slope is proposed.

  • Slope geometries and spatial variability of soil strength are considered.

  • Limit equilibrium calculation method of micro-pile reinforced slope is obtained.
  • K-L series expansion method is adopted to generate random field of soil strength parameters.
  • Reliability index of the slope is calculated by Monte Carlo simulation (MCS).
图 1: 土体强度参数随机场

Fig. 1. Random field of soil strength parameters

图 2: 抗滑移微型桩加固边坡稳定性分析计算模式

Fig. 2. Calculation mode for stability analysis of slope reinforced with antislide micropiles

图 3: 极限平衡法安全系数计算图

Fig. 3. Safety factor calculation diagram of limit equilibrium method

图 4: 微型桩加固边坡可靠度计算流程

Fig. 4. Reliability calculation process of slope reinforced by micro-pile

图 5: 验证模型图

Fig. 5. Diagram of verification model

图 6: 蒙特卡罗模拟次数对安全系数与失效概率的影响

Fig. 6. Effect of Monte Carlo simulations times on the safety factor and failure probability

图 7: 分析模型图

Fig. 7. Diagram of analytical model

图 8: 安全系数正态分布曲线

Fig. 8. Safety factor normal distribution curve

图 9: 可靠性指标与安全系数随坡高的变化

Fig. 9. Change of reliability index and safety factor with slope height

图 10: 可靠性指标与安全系数随坡高的变化

Fig. 10. Change of reliability index and safety factor with slope height

图 11: 可靠性指标与安全系数随桩长的变化

Fig. 11. Change of reliability index and safety factor with pile length

图 12: 可靠性指标与安全系数随自相关距离的变化

Fig. 12. Change of reliability index and safety factor with autocorrelation distance

图 13: 可靠性指标与安全系数随变异系数的变化

Fig. 13. Change of reliability index and safety factor with variation coefficient

图 14: 可靠性指标与安全系数随相关系数的变化

Fig. 14. Change of reliability index and safety factor with correlation coefficient

作者信息 | Authors

王钰轲 Yu-Ke Wang

郑州大学 (Zhengzhou University) 水利与交通学院

尚海威 Hai-Wei Shang

郑州大学 (Zhengzhou University) 水利与交通学院

万愉快 Yu-Kuai Wan, 通讯作者 (Corresp.)
宁夏大学 (Tongji University土木与水利工程学院

Email: wanyukuai@nxu.edu.cn

陈宇源 Yu-Yuan Chen

日本九州大学 (Kyushu University土木工程系



律梦泽 M.Z. Lyu | 编辑 (Ed) 

P.D. Spanos | 审校 (Rev)

陈建兵 J.B. Chen | 审校 (Rev)

彭勇波 Y.B. Peng | 审校 (Rev)

Probab Eng Mech
国际学术期刊 Probabilistic Engineering Mechanics 创立于 1985 年,SCI 收录,JCR Q1,现任主编是美国工程院院士、中国科学院外籍院士、莱斯大学 Pol D. Spanos 教授。
 最新文章