原位微分电化学质谱仪(DEMS)是一种将电化学反应池与质谱仪联用,在电化学反应过程中,能在毫秒时间内对电化学反应气体和挥发性中间产物以及最终产物进行定性或定量分析的仪器,已成为顶刊中OER反应机理研究&硝酸根还原机理研究的必备利器。
一、Part1:OER反应机理研究在论文中应用案例1.Nature Catalysis:原位DEMS揭示原子阵列的OPM反应机制
(文中DEMS测试结果使用上海零露仪器设备有限公司DEMS)通过与同位素标记法相结合的原位微分电化学质谱表征手段(DEMS),研究人员对析氧反应产物进行了原位监测,以进一步验证该催化剂的反应机理。由于OPM机制独特的表面氧自由基偶联步骤,若将电解液中的H216O以同位素H218O取代,则依托传统AEM机制的单原子活性位点催化剂,将仅会出现34O2和36O2两种气态产物。而依据OPM反应机制的新型催化剂将同时产生32O2,34O2和36O2三种不同类型气态产物。表征结果如上图,12Ru/MnO2催化剂确实探测到了由两个表面吸附的16O自由基直接偶联得到的32O2气态产物,充分证明了该催化剂在析氧反应过程中,遵循独特的OPM机制。2.Nature Communications:原位DEMS揭示晶格氧介导—氧空位新机制(文中DEMS测试结果使用上海零露仪器设备有限公司DEMS) 为了进一步验证晶格氧不参与OER过程,原位18O同位素标记差分电化学质谱(DEMS)测量。图中显示了Rh-RuO2/G在 H218O中四次LSV期间的36O2,34O2 和32O2信号,,其中微量34O2产物归因于天然同位素丰度18O水在~2%。表明晶格氧原子不参与制氧,从而排除了传统的LOM。在标记之后,在H216O的硫酸溶液中检测到大量的32O信号,但没有任何有关18O标记的Rh-RuO2的36O2的信号。结合原位XPS,证实了OER反应遵循一种晶格氧介导—氧空位(LOM-OVSM)新机制,使得催化剂表现出令人满意的OER活性和稳定性。
3.Science Advances:原位DEMS揭示高熵氧化物AEM机制(文中DEMS测试结果使用上海零露仪器设备有限公司DEMS)
在0.5M H2SO4 的H218O和H216O溶液中进行DEMS测试,进一步阐明M-RuIrFeCoNiO2和M-RuO2上发生的析氧机制,18O标记后的M-RuIrFeCoNiO2产生32O2和34O2,难以识别出36O2信号;而在M-RuO2上36O2信号明显。注意,剩余的表面H218O吸附剂可能参与了生成36O2的反应。M-RuIrFeCoNiO2生成34O2和36O2的比例都远低于M-RuO2,这表明晶格氧参与(晶格氧氧化机制,LOM)对M-RuIrFeCoNiO2有抑制作用。正如DEMS测量所分析的那样,M-RuIrFeCoNiO2遵循主要的传统吸附质演化机制(AEM),来自环境的水分子在金属氧化物表面发生一系列脱质子过程和O-O偶联,涉及HO*、O*和HOO*中间体。在此路径中,O2产物(32O2)的来源仅来自电解质(16O16O)。另一种可能的途径是晶格析氧(LOM),该途径与AEM过程相同,不同之处是O2分子(34O2)由一个标记的晶格氧(18O)和一个环境氧(16O)组成。PEM电解水是最有潜力的可再生能源系统,但OER的缓慢动力学限制了PEM电解水的发展,设计合成超高活性和稳定性的催化剂,揭示它们的反应机制至关重要。经过分析各种顶刊可以发现,原位DEMS凭借着客观性、准确性、灵敏性等独特优势,几乎成为各种顶刊上研究OER机理必备的测试手段,也为发现一些新的OER反应机理提供了有利的证据。二、Part2:硝酸盐电催化还原(NO3RR)顶刊中运用DEMS的实例
上海零露仪器设备有限公司
1.Nature Catalysis:原位DMES揭示RuxCoy合金得的NO3RR反应机理(文中DEMS测试结果使用上海零露仪器设备有限公司DEMS)研究人员通过原位微分电化学质谱表征手段(DEMS)对Ru15Co85合金的NO3RR反应过程中的中间体进行原位检测,以进一步验证该催化剂的反应机理。原位DEMS测试显示以下质荷比(m/z)信号:NO (30)、NH3 (17)、N2(28)、HNO (31) 和 NH2OH (33),推导了 Ru15Co85合金上可能的反应途径,包括解离、远端O缔合、远端N缔合和交替N缔合途径,最终充分证明了还原路径遵循下图蓝色路线。
2.Nature Communications:原位DMES揭示FeCu双原子催化剂的NO3RR反应机理(文中DEMS测试结果使用上海零露仪器设备有限公司DEMS)通过原位微分电化学质谱 (DEMS),作者揭示了FeCu双原子催化剂从 NO3-到NH3的反应途径和转化机制。为了破译中间副产物和反应途径,作者对多个循环进行了DEMS 分析。在每个周期中,所施加的电压从0.1V扫描到-0.6V(相对于 RHE)。了质荷(m/z) 比信号 46、30、33 和 17,分别对应于 NO2、NO、NH2OH和NH3。除了主要产物 (NH3) 之外,NO 的含量比 NH2OH和NO2高两个数量级,这意味着最可能的反应途径如下:NO3-首先被吸附并排出形成*NO3,这起着重要的作用,因为NO3-的亲和力差导致解吸困难。一旦被吸收,*NO3就会被氢化形成*NO3H,*NO3H进一步受到质子的攻击,释放出H2O并产生*NO2。加氢/脱水循环按照以下顺序还原*NO2:*NO2H→*NO→*NOH→*NHOH→*NH2OH→*NH2→*NH3。最后一步是催化剂上NH3的解吸。3.Angewandte:原位DMES揭示铜基催化剂硝酸盐还原制氨的活性来源
(文中DEMS测试结果使用上海零露仪器设备有限公司DEMS)
作者通过在线微分电化学质谱 (DEMS)来探究 Cu/Cu2ONWA的高活性起源。施加电压从0.05V变化到-0.95V期间,连续四个循环出现分别对应NO2、NO、NH2OH和NH3的m/z信号46、30、33、17。根据DEMS的结果,可以推导出硝酸盐电还原反应路径。值得注意的是,与 Cu 相比,Cu/Cu2O 可以促进 *NOH 中间体的形成,因此Cu/Cu2O对硝酸盐还原到氨具有更高的转化率、法拉第效率和选择性。4.Angewandte:原位DMES揭示一维铁基催化剂硝酸盐还原的反应机理(文中DEMS测试结果使用上海零露仪器设备有限公司DEMS)作者采用原位微分电化学质谱(DEMS)检测挥发性中间体和产物。结果显示 m/z28、16、17 和 30 处存在信号,分别对应于 N2、NH2、NH3和NO。尖锐的m/z=16和m/z=17信号表明NH2和NH3是反应早期 Fe/NFs 的主要产物。结合上述结果,可以推断出还原途径。首先,电子还原阴极表面吸附的H2O,形成Hads。然后,Hads逐步将NO3—还原为中间体(NO3*→NO2→NO*→N*)。值得注意的是,两个N* 可以结合在一起生成 N2,而大多数N* 中间体通过氢化转化为NH*、NH2*和NH3*。5.Advanced Materials:原位DMES揭示Fe─N界面对硝酸盐还原路径的影响(文中DEMS测试结果使用上海零露仪器设备有限公司DEMS)为了验证所研究系统中提出的电催化NO3RR途径,使用原位电化学差示质谱仪检测中间体和一些还原产物。在电催化测试过程中,阴极上形成的气态中间体和产物立即通过真空泵送入在线质谱仪,并根据其 m/z 值使用质谱仪进行鉴定。可以利用信号强度分析中间体和产物的实时浓度。如图所示,弱的m/z=46信号峰和相对强的m/z=30和31信号峰清楚地表明电解过程中存在NO2、NO和NOH中间体,而弱的NO2-信号峰证实了电解过程中存在NO2、NO和NOH中间体。NO2在催化剂表面快速转化为NO。此外,在电解条件下,*NO被活性*H快速氢化为NOH,随后脱氧为*N。由于Fe结合形成N2的强大氢化能力,该*N逐渐氢化为*NH、*NH2和*NH3。N2的峰强度远高于*NH3的峰强度,表明 RL-Fe2N@NC 显示出较高的 N2选择性。基于以上结果,提出电催化NO3RR途径如下:首先,NO3-吸附在RL-Fe2N@NC的NC表面上,通过电化学作用在Fe2N界面处还原为*NO2-;*NO2通过不同的反应途径快速转化为*NO。途径I涉及电子介导的还原为 *N,然后氢化,最终形成 NH3,途径 II 涉及*N─*N 组合形成N2,而途径III涉及氢介导的还原为 *NOH 以及随后的氢化,最终形成*NH3。在最后一步中,NH3相关物质通过电氯化转化为N2。总结:电催化技术非常适合NO3-去除(从环境和经济角度来看),因为它能充分利用可再生电力,具有极高的 NO3-去除性能,并且不良副产物的形成可以忽略不计。但是NO3RR的还原产物多,路径不明确,了解其反应机理对设计合成超高活性和稳定性的催化剂至关重要。经过分析各种顶刊可以发现,原位DEMS凭借着客观性、准确性、灵敏性等独特优势,几乎成为各种顶刊上研究NO3RR机理必备的测试手段,也为发现一些新的NO3RR反应机理提供了有利的证据。
上海零露仪器设备有限公司致力于DEMS仪器的研制和开发,目前在上海设有应用实验室,可以提供样品测试和仪器销售服务,积累了硝酸根电还原测试的丰富经验,协助客户在Nature Energy,Nature Catalysis,Nature
Comm.,EES,JACS,Joule,Angewa,AM,AEM等影响因子期刊发表高水平论文200余篇。如需测试或仪器购买,欢迎欢迎来电或现场来访:
TEL:021-50670008
电话/微信张经理:138-1698-3778
www.linglush.com
上海零露仪器设备有限公司
上海市浦东新区兰嵩路555号森兰美仑大厦A座208室
更多上海零露公司DEMS发表NO3RR论文清单如下:1.Chao Lin,
Xiaopeng Li*, Zhipan Liu*, Zheng Jiang*, Jung-Ho Lee*, et al. In-situ reconstructed Ru atom array on α-MnO2with enhanced performance for acidic water oxidation.Nature Catalysis 2021, 4, 1012-10232.Yunzhou Wen, Bo Zhang*, Huisheng Peng*, Edward H.
Sargent*, et al. Stabilizing Highly Active Ru Sites by Suppressing Lattice Oxygen
Participation in Acidic Water Oxidation.J. Am. Chem. Soc. 2021, 143, 6482-64903. Zhaoping Shi, ZhengJiang*,
Changpeng Liu*,
Wei Xing*,
Junjie Ge*, et al. Confined Ir single sites with
triggered lattice oxygen redox: Toward boosted and sustained water oxidation
catalysis. Joule2021, 5, 2164-21764. Longsheng Zhang, Bo Zhang*, Huisheng Peng*, et
al. Boosting Neutral Water Oxidation through Surface Oxygen Modulation. Adv. Mater. 2020, 32, 20022975.Jungang Hou* et al. Triggering the
Lattice Oxygen Activation of Single-atomic Mo Sites Anchored Ni-Fe
Oxyhydroxides Nanoarrays for Electrochemical Water Oxidation. Adv. Mater. 2020, 22025236. Pinxian Xi* et al. Tailoring Oxygen Reduction
Reaction Pathway on Spinel Oxides via Surficial Geometrical-Site Occupation
Modification Driven by Oxygen Evolution Reaction. Adv. Mater. 2020, 22028747.Jiangwei
Zhang*, Gao-Ren Li* et al. Key Roles of Surface Fe Sites and Sr Vacancies in
Perovskite for Efficient Oxygen Evolution Reaction Participated by Lattice
Oxygen Oxidation. Energy Environ. Sci.2022,15,
3912-39228. Junfeng Gao*, Jungang Hou* et al. Identification of
the Origin for Reconstructed Active Sites on Oxyhydroxide for Oxygen Evolution
Reaction. Adv. Mater. 2022, 22093079.Junjie Ge*, Wei Xing* et al. Enhanced Acidic Water
Oxidation by Dynamic Migration of Oxygen Species at the
Ir/Nb2O5−x Catalyst/Support Interfaces. Angew. Chem. Int.
Ed.2022,
61, e20221234110. Yingjie
Wang*, Jiali Gao*, Xia Long*, Shihe Yang* et al. Fe(lll) Docking-Activated Sites in Lavered Birnessite for Efficient Water
Oxidation. J. Am. Chem. Soc. 2023,145,20,11215-1122611.Wei Luo* et al. Atomically dispersed Ru oxide catalyst with lattice oxygen participation
for efficient acidic water oxidation.Chem 2023,
9, 1–1512.Yang Hu*, Yao
Zheng*, Pin Xian Xi* et al. Understanding
the sulphur-oxygen exchange process of metal sulphides prior to oxygen
evolution reaction. Nature
Communicatins. (2023)14,191413. Jianping Xiao*, Zhang-Shuai Wu* et al. Unraveling oxygen vacancy site mechanism of Rh-doped RuO catalyst for long-lasting
acidic water oxidation. Nature Communicatins.2023.14. Chun
Hu, Xiaoqing Huang* et al. Misoriented high-entropy iridium ruthenium oxide for acidic water
splitting. SCIENCE ADVANCES 15 Sep 2023 Vol
9,Issue 37 DOI:
10.1126/sciadv.adf914415.Junfeng
Gao*, Jungang Hou* et al. Identification of the Origin for Reconstructed Active
Sites on Oxyhydroxide for Oxygen Evolution Reaction. Adv. Mater. 2022, 220930716.Jiajia
Han,* Xianying Wang*,Xiaoqing Huang * et al. Misoriented high-entropy iridium
ruthenium oxide for acidic water splitting.Sci. Adv.9, eadf9144
(2023) 15 September 202317.Yi
Lyu, * and Xiaofei Liu * et al. Mechanochemical-tuning size dependence of
iridium single atom and nanocluster towards highly selective ammonium
production. Chem Catalysis3,
100477, January 19, 202318.Xiaofei
Liu, * Guangzhao Wang, * Yusuke Yamauchi, * Tian (Leo) Jin * et al. Distinctive
p-d orbital hybridization in RuSb nanobranches for simultaneously enhanced
hydrogen evolution and hydrazine oxidation in alkaline seawater. Appl. Catal. B 333 (2023) 12277119.Jinping
Li, * Chuan Zhao, * Guang Liu* et al. Stable tetravalent Ni species generated
by reconstruction of FeB-wrapped NiMoO pre-catalysts enable efffcient water
oxidation at large current densities. Appl. Catal. B 341 (2024) 12329720.Ya
Yan, * Wei Zhang* et al. Electrocatalytic water oxidation with manganese
phosphates. Nature
Communications (2024)15:141021.Yifu Yu*,Bin Zhang*, et al. Unveiling the Activity Origin of Copper-based Electrocatalyst for
Selective Nitrate Reduction to Ammonia. Angew. Chem. 10.1002/ange.20191599222.Jing-Hui He*, Jian-Mei Lu*, et al. Built-in
Electric Field Triggered Interfacial Accumulation Effect for Efficient Nitrate
Removal at Ultra-Low Concentration and Electroreduction to Ammonia. Angew. Chem. Int. Ed. 10.1002/anie.20210978523.Xiaoshu Lv*,Guangming Jiang*, et al.
Electrocatalytic nitrate reduction on bimetallic Palladium-Copper Nanowires:
Key surface structure for selective dinitrogen formation. Chemical Engineering Journal 435 (2022) 13496924.Ying Wang*, et al. Selective electrocatalytic reduction of nitrate
to dinitrogen by Cu2O nanowires with mixed oxidation-state. Chemical Engineering Journal 433 (2022) 13349525.Ying Wang*, et al. On-Demand Atomic Hydrogen Provision by Exposing
Electron-Rich Cobalt Sites in an Open-Framework Structure toward Superior
Electrocatalytic Nitrate Conversion to Dinitrogen. Environ. Sci.
Technol. 2022, 56, 614−62326.Jr-Hau He*, Xiaosheng Fang*, et al.
Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal
nanocatalysts and bio-inspired metalloenzymes. Nano Energy 86 (2021) 10608827.Bin Zhang*, et al. Boosting Selective Nitrate Electroreduction to
Ammonium by Constructing Oxygen Vacancies in TiO2. ACS Catal. 2020, 10, 3533−354028.Yifu Yu*, Bin Zhang*, et al. Integrated
Selective Nitrite Reduction to Ammonia with Tetrahydroisoquinolines
Semi-dehydrogenation over a VacancyRich Ni Bifunctional Electrode.29.Yifu Yu*, Bin Zhang*, et al. Promoting
selective electroreduction of nitrates to ammonia over electron-deficient Co
modulated by rectifying Schottky contacts Promoting selective electroreduction
of nitrates to ammonia over electron-deficient Co modulated by rectifying
Schottky contacts. Sci China Chem, 2020, 630.Fan Dong*, et al. Metal-organic
framework derived carbon-supported bimetallic coppernickel alloy
electrocatalysts for highly selective nitrate reduction to ammonia. Journal of Colloid
and Interface Science 614 (2022) 405–41431.Yifu Yu*, Yuting Wang*, et al. Cu
clusters/TiO2x with abundant oxygen vacancies for enhanced electrocatalytic
nitrate reduction to ammonia. J. Mater. Chem. A, 2022, 10, 644832.Jing-Hui He*,and Jian-Mei Lu*, et al. A
Bioinspired Iron-Centered Electrocatalyst for Selective Catalytic Reduction of
Nitrate to Ammonia. ACS Sustainable Chem. Eng. 2022, 10, 5958−596533.Honghan Fei*, Guohua Zhao*, et al. Efffcient and selective
electrochemical reduction of nitrate to N2 by relay catalytic effects of Fe-Ni
bimetallic sites on MOF-derived structure. Applied Catalysis B:
Environmental 301 (2022) 12082934.Mingfei Shao*, et al. Active hydrogen boosts electrochemical
nitrate reduction to ammonia. Nature Communications | (2022)13:795835.Qingshan Zhu*,Huigang Zhang*, Jun Lu*, et al. Fe/Cu diatomic catalysts for electrochemical
nitrate reduction to ammonia. Nature Communications (2023)14:363436.Guangming Jiang*, Hong Liu*, et al. Electron-deffcient Cuδ+ stabilized by interfacial Cu–O-Al
bonding for accelerating electrocatalytic nitrate conversion. Chemical Engineering
Journal 435 (2022) 13485337.Yifu Yu*, Bin Zhang*, et al.
Structurally Disordered RuO2 Nanosheets with Rich Oxygen Vacancies for Enhanced
Nitrate Electroreduction to Ammonia. Angew. Chem. Int.
Ed. 2022, 61, e20220260438.Xiangzhi Cui*, et al. Dual-Site W-O-CoP Catalysts for Active and
Selective Nitrate Conversion to Ammonia in a Broad Concentration Window. Adv. Mater. 2023, 35, 230450839.Jinmeng Cai*, Shuang-Quan Zang*, et al.
Tandem Nitrate-to-Ammonia Conversion on Atomically Precise Silver
Nanocluster/MXene Electrocatalyst. Angew. Chem. Int. Ed. 2024, e20231691040.Xiaofu Sun*,Buxing Han*, et al. Boosting
Electrocatalytic Nitrate-to-Ammonia via Tuning of NIntermediate Adsorption on a
ZnCu Catalyst. Angew. Chem. 2023, 135, e202307952