文章信息
题目:沿深度梯度探究铁改性生物炭对盐碱土壤化学性质和细菌群落的改善作用
Insight into amelioration effect of iron-modified biochar on saline-alkali soil chemical properties and bacterial communities along a depth gradient
文章类型:Research Article
作者:
王吉元1,2, Riaz MUHAMMAD2, Saba BABAR1, Zeinab El-DESOUKI1, 李宇轩1, 王响玲1, 夏晓阳1, 姜存仓1,*
单位:
1华中农业大学
2仲恺农业工程学院
文章链接:
https://www.sciencedirect.com/science/article/pii/S1002016024000651
DOI: 10.1016/j.pedsph.2024.07.001.
Citation: Wang J Y, Muhammad R, Babar S, El-Desouki Z, Li Y X, Wang X L, Xia X Y, Jiang C C. 2024. Insight into amelioration effect of iron-modified biochar on saline-alkali soil chemical properties and bacterial communities along a depth gradient. Pedosphere. https://doi.org./10.1016/j.pedsph.2024.07.001.
本文主要探讨了铁改性生物炭(FB)对盐碱土壤化学性质和细菌群落在不同土层深度的影响。研究发现,铁改性生物炭能显著改善土壤的化学性质,包括pH值、有机质含量、电导率(EC)和钠吸附比(SAR),铁改性生物炭在提高表层土壤酶活性和减少底层土壤盐基阳离子含量方面表现出显著效果,并且显著增加了土壤中有益细菌的丰度,铁改性生物炭能够通过降低土壤盐分和提供碳源来促进微生物活动,从而改善盐碱土壤的质量。
关键点
1.研究方法
铁改性生物炭的应用:本研究采用铁改性生物炭(FB)来改良盐碱土壤,与传统的生物炭(PB)相比,铁改性生物炭具有更高的反应活性和更强的吸附能力,能够更有效地改善土壤的理化性质。 培养实验设计:研究设计了一个为期28天的土柱培养实验,细致地监测了不同处理在不同时期对不同深度土壤性质的影响。这种动态监测方法能够更准确地反映处理对土壤的持续影响。
2. 主要结论
土壤酶活性显著提高:研究发现,铁改性生物炭处理能够显著提高土壤酶活性,包括蔗糖酶、酸性磷酸酶和脲酶等。酶活性的提高表明土壤的生物活性和养分循环能力增强,有助于土壤健康的恢复。 有益细菌丰度增加:1% FB处理增加了土壤细菌群落的α多样性,改变了细菌群落组成,并提高了有益细菌的丰度,不仅有助于土壤的生态稳定性,还能提高土壤的抗逆能力。
3. 微生物群落结构的变化
特定菌属丰度的变化:通过多组比较分析发现1% FB处理增加了Pontibacter、Ammoniphilus和Azospirillaceae等有益菌属的丰度,同时减少了Thermincola和Piscibacillus等可能有害的菌属的丰度。这种变化有助于改善土壤的微生物生态环境。 相关性分析:研究揭示了细菌群落结构变化与土壤化学性质之间的显著关联,特别是Firmicutes和Myxococcota的丰度与土壤pH、EC(电导率)和盐基阳离子含量呈负相关。这一发现表明,通过调整土壤化学性质,可以间接影响土壤微生物群落结构,为土壤改良提供了新的思路。
4.综合改良效果
土壤理化性质的改善:铁改性生物炭处理显著提高了土壤有机质含量和pH值,改善了土壤的理化性质,有助于作物的生长和土壤健康的恢复。 表层土壤的显著变化:研究特别指出,生物炭处理对0-10 cm表层土壤的影响最为显著。这一结果为实际农业应用中生物炭的使用提供了重要参考,表明生物炭在表层施用效果最佳。
ABSTRACT
The application of modified biochar has been proven to be a novel and promising strategy to improve saline-alkali soil. However, the effect of iron-modified biochar (FB) on the chemical properties of saline-alkali soil at different depths remains unclear. Therefore, we designed a soil column that divides the soil into three consecutive parts to explore the amelioration effect of iron-modified biochar on saline-alkali soil chemical properties and the response of bacterial communities along a depth gradient. The results showed that soil chemical properties were significantly improved with 1% FB application, while the amelioration effect of FB was different between topsoil and subsoil. A significant increment in activities of extracellular enzymes in topsoil and decrease in base cations in subsoil were observed in 1% FB treatment. Moreover, the abundances of halophilic taxa were higher in subsoil than in topsoil, especially for the phyla Bacteroidetes and Deinococcus. Furthermore, the abundance of beneficial bacteria (e.g., Alphaproteobacteria, Sphingomonas, and Pontibacter) in saline-alkali soil increased at 1% FB. Our results suggest the influence of iron-modified biochar on soil properties and bacterial communities along a soil depth gradient, providing a novel strategy for improving saline-alkali soil with biochar.
Key Words: base cations, extracellular enzyme, salinization, salt movement, soil depth
中文摘要
应用改性生物炭已被证明是一种新颖且具有前景的盐碱土壤改良策略。然而,铁改性生物炭(FB)对不同深度盐碱土壤化学性质的影响尚不明确。因此,我们设计了一个将土壤分为三部分的土柱来探讨铁改性生物炭对不同深度盐碱土壤化学性质改良效果以及细菌群落在深度梯度上对其的响应。结果表明,1% FB处理显著改善了土壤的化学性质,但FB在表层土壤和底层土壤中的改良效果不同。1% FB处理显著增加了表层土壤中胞外酶的活性,同时减少了底层土壤中的基本阳离子。此外,在底层土壤中,嗜盐菌的丰度高于表层土壤,尤其是拟杆菌门和放线菌门。此外,1% FB处理显著增加了盐碱土壤中有益细菌(如α-变形菌纲、鞘脂单胞菌属和红细菌属)的丰度。研究结果表明,铁改性生物炭对沿土壤深度梯度的土壤性质和细菌群落具有影响,为用生物炭改良盐碱土壤提供了一种新策略。
关键词:盐基阳离子、胞外酶、盐碱化、盐分移动、土壤深度
表1 生物炭样品的基本性质
图2 在培养7天和28天后,传统生物炭(PB)和铁改性生物炭(FB)改良剂(剂量=0.5%和1%)对不同深度土壤的pH值(A)、土壤有机质(B)、电导率(C)、钠吸附比(D)以及包括钾离子(E)、钠离子(F)、钙离子(G)和镁离子(H)在内的碱性阳离子含量的影响。不同的小写字母表示在相同土壤深度和采样时间下处理之间存在显著差异(Duncan检验,P < 0.05)。双因素方差分析的统计结果以F值表示。* P < 0.05;** P < 0.01。
Fig. 2 Effects of PB and FB amendment (dosage = 0.5% and 1%) on soil pH (A), SOM (B), EC value (C), SAR (D), and the content of base cations, including K+ (E), Na+ (F), Ca2+ (G), and Mg2+ (H), in different depth soils after 7 and 28 d of incubation. Different lowercase letter indicated significant differences between treatments under the same soil depth and sampling time according to Duncan's test (P < 0.05). The statistical results of two- way ANOVA are expressed in F-value. * P < 0.05; ** P < 0.01.
Fig. 3 Activities of extracellular enzymes in different depth soils after 7 and 28 d of incubation. A: The activity of β-glucosidase (β-G); B: The activity of β-cellobiohydrolase (CBH); C: The activity of β-xylanase (β-X); D: The activity of N-acetyl-glucosaminidase (NAG). Different lowercase letter indicated significant differences between treatments under the same soil depth and sampling time according to Duncan’s test (P < 0.05). The statistical results of two-way ANOVA are expressed in F-value. * P < 0.05; ** P < 0.01.
Fig. 4 (A) Shannon diversity index in top and sub soils of the control, 1% PB, and 1% FB treatment after 28 d of incubation. P < 0.05 marked as *. (B) Principal Coordinates Analysis (PCoA) based on Bray-Curtis distance of the soil bacterial community composition. (C) Linear discriminant analysis Effect Size (LEfSe), showing significantly different abundant bacterial taxa in top and sub soils of different treatments. The discriminative taxa are represented by dots with different color, from the center outward, they represent the phylum, class, order, family, and genus levels.
图5 对照组(A)、1% PB组(B)和1% FB组(C)在28天后表层土壤和底层土壤中差异OTUs。每个点代表一个OTU。红点和绿点分别表示增加的OTU和减少的OTU。基于差异OTUs的细菌门相对丰度,在对照组(D)、1% PB组(E)和1% FB组(F)中的变化。
Fig. 5 Differential OTUs in top soil versus sub soil under the control (A), 1%PB (B), and 1%FB (C) treatments at 28 d. Each point represents a single OUT. The red and green points respectively represent enriched OUT and declined OUT. Relative abundances of bacterial phylum based on the differential OTUs in the control (D), 1% PB (E), and 1%FB (F) treatments at 28 d.
图6 在表层土壤(A)和底层土壤(B)中基于属水平的多组比较。对照组(C)、1% PB组(D)和1% FB组(E)中基于属水平的表层土壤和底层土壤的两组比较。*, ** 和 *** 分别表示在P < 0.05、P < 0.01 和 P < 0.001 水平上的显著性。
Fig. 6 Multi-group comparison based on genus level among treatments in top soil (A) and sub soil (B). Two groups of comparison based on genus level between top and sub soils in the control (C), 1%PB (D), and 1%FB (E) treatments. *, ** and *** represent significance at P < 0.05, P < 0.01 and P < 0.001, respectively.
图7 土壤化学性质与细菌类群在门水平(A)和属水平(B)的相关性分析。红色表示正相关,绿色表示负相关。*, ** 和 *** 分别表示在P < 0.05、P < 0.01 和 P < 0.001 水平上的显著性。
Fig. 7 Correlation analysis of soil chemical properties with phylum (A) and genus level (B) of bacterial taxa. Red colors indicate positive correlations, while green colors indicate negative correlations. *, ** and *** represent significance at P < 0.05, P < 0.01 and P < 0.001, respectively.
长按二维码 畅读全文
陈怀满研究员序——《健康土壤培育与实践指南——健康土壤的生态管理》(原著第四版)出版
《健康土壤培育与实践指南——健康土壤的生态管理》(原著第四版)出版——朱永官院士序
识别图中二维码即可购买本书(可开发票,请在备注中注明开票信息和邮箱)
近期文章推荐
亮文解读丨氮肥施用对土壤有机碳动态影响的层位差异:农业生态系统案例分析
朴世龙院士团队《Global Change Biology 》最新成果!
精选土壤好书,长按识别二维码了解
由于微信修改了推送规则,请大家将土壤家加为星标,或每次看完后点击页面下端的“在看”,这样可以第一时间收到推文!合作、转载、入群,请加13926117407微信号(或发邮件至149996384@qq.com)