【Advances in Applied Energy】清洁能源转型中的关键金属构建需求:交通电气化研究案例定量化回溯

学术   科学   2025-01-19 18:31   美国  

原文信息:

Critical metal requirement for clean energy transition A quantitative review on the case of transportation electrification

原文链接:

https://www.sciencedirect.com/science/article/pii/S2666792422000348

摘要

清洁能源转型在达成减缓气候变化这一目标上发挥着至关重要的作用。至于交通运输部门,一般的电池或燃料电池电动汽车(EV)已成为减少运输阶段温室气体排放量的关键解决方案。然而,电动汽车快速生产和使用也使得锂离子电池和燃料电池生产中所需使用的关键金属(如锂、镍、钴、铂族金属(PGM)等)存在潜在供应链风险。物质流分析(MFA)已广泛应用于评估各种时空尺度上交通运输电气化所需关键金属的需求水平。本文对78篇应用物质流分析(MFA)来对交通运输电气化的关键金属需求进行评估的研究文章进行了定量化的回溯和分析。笔者分析了所选研究所处的地理位置和时间范围、交通运输门类、电动汽车类别、电池技术、所用材料和建模方法的特点。根据这些研究中所指出的全球尺度预测结果,笔者比较了最受关注的四种金属的年度和累计全球需求量:锂、镍、钴和铂族金属。尽管存在较大的不确定性,但大多数研究表明,这四种金属的年需求量将继续增加,并在2021年远远超过其生产能力水平。这些金属的全球储量可能满足短期(2020–2030)和中期(2020-2050)的累计需求,但不足以满足远期(2020–2100)需求。之后,笔者总结了这些研究中提出的有关政策建议的意义。最后,笔者从四个方面讨论了本文的主要研究发现:部署电动汽车的环境和社会影响,是否将重型汽车电气化,回收利用中所存在的机遇和挑战,以及未来的研究方向。

更多关于"Electric vehicles"的文章请见:https://www.sciencedirect.com/search?qs=Electric%20vehicles&pub=Advances%20in%20Applied%20Energy&cid=777797

Abstract

The clean energy transition plays an essential role in achieving climate mitigation targets. As for the transportation sector, battery and fuel cell electric vehicles (EVs) have emerged as a key solution to reduce greenhouse gasses from transportation emissions. However, the rapid uptake of EVs has triggered potential supply risks of critical metals (e.g., lithium, nickel, cobalt, platinum group metals (PGMs), etc.) used in the production of lithium-ion batteries and fuel cells. Material flow analysis (MFA) has been widely applied to assess the demand for critical metals used in transportation electrification on various spatiotemporal scales. This paper presents a quantitative review and analysis of 78 MFA research articles on the critical metal requirement of transportation electrification. We analyzed the characteristics of the selected studies regarding their geographical and temporal scopes, transportation sectors, EV categories, battery technologies, materials, and modeling approaches. Based on the global forecasts in those studies, we compared the annual and cumulative global requirements of the four metals that received the most attention: lithium, nickel, cobalt, and PGMs. Although major uncertainties exist, most studies indicate that the annual demand for these four metals will continue to increase and far exceed their production capacities in 2021. Global reserves of these metals may meet their cumulative demand in the short-term (2020–2030) and medium-term (2020–2050) but are insufficient for the long-term (2020–2100) needs. Then, we summarized the proposed policy implications in these studies. Finally, we discuss the main findings from the four aspects: environmental and social implications of deploying electric vehicles, whether or not to electrify heavy-duty vehicles, opportunities and challenges in recycling, and future research direction.

Keywords

Battery

Fuel cell

Electric vehicles

Material flow analysis

Metal

Graphics

Fig.1.Technical schemas of vehicles with different powertrains: (a) battery electric vehicle (BEV), (b) extended range electric vehicle (EREV), (c) plug-in hybrid electric vehicle (PHEV), (d) fuel cell electric vehicle (FCEV), (e) hybrid electric vehicle (HEV), and (f) internal combustion engine vehicle (ICEV)

Fig.4.Color spectrum for hydrogen production. (a) Green hydrogen, (b) blue hydrogen, (c) turquoise hydrogen, (d) yellow hydrogen, (e) pink/purple/red hydrogen, (f) brown hydrogen, (g) black/gray hydrogen, and (h) white hydrogen. CCUS: carbon capture, utilization, and storage.

Fig.5.Criticality of metals for the clean energy transition. BEV: battery electric vehicle, PHEV: plug-in hybrid electric vehicle, HEV: hybrid electric vehicle, FCEV: fuel cell electric vehicle, REEs: rare earth elements, PMGs: Platinum group metals, PV: photovoltaic, CSP: concentrated solar-thermal power. Scale: “1 ″ means low

criticality, “2 ″ denote moderate criticality, and “3 ″ denote high criticality. Data is derived from IEA

关于Applied Energy

本期小编:林成楷;审核人:何意

《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子11.446,CiteScore 20.4,高被引论文ESI全球工程期刊排名第4,谷歌学术全球学术期刊第50,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》现已正式上线。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!

公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org

点击“阅读原文”

喜欢我们的内容?

点个“赞”或者“再看”支持下吧!

AEii国际应用能源
发布应用能源领域资讯,介绍国际应用能源创新研究院工作,推广应用能源优秀项目,增进应用能源领域合作
 最新文章