来源:中国载人航天
2023年8月18日,中国载人航天工程办公室召开载人航天工程空间应用与发展情况介绍会。“首次液态金属空间热管理在轨试验”作为近期在空间站开展的航天技术试验之一,获得了广泛关注。本次试验取得了哪些试验成果?未来将如何应用?
液态金属
对流换热就是液态金属流过发热的表面,吸收表面热量,使发热表面的温度维持在某一合适的值,吸收热量的液态金属会升温,在某一散热装置内将热量传给环境后恢复到初始温度,从而再次流过发热表面,实现循环流动;
固液相变热控是安装在发热表面上的相变热沉在吸收热量后熔化,从固态变成液态,熔化过程吸收热量但温度不变,从而将发热表面控制在某一合适的温度,当发热表面不再工作时,液态金属又逐渐凝固成固态,凝固过程温度不变但会释放热量,这些热量逐渐散到环境中,完全凝固后的金属又准备迎接发热表面的下一次工作,固液相变热控用的金属材料拥有较低的熔点,一般在100℃以下,可以按照需求调整。
相变控温模块获得了金属材料熔化过程的温度随时间变化的曲线,熔化过程中材料的温度分布受重力影响明显,有重力时流体温度不同造成的密度差异会引发自然的流动,这种流动会促使液态金属内部温度更快速地趋于均匀;而太空环境重力极微弱,密度差不会引发自然流动,液态金属内部的温度分布就会出现相对不均匀,本次试验在装有金属相变材料的腔体内设置了增强传热结构,可以快速将热量传递到金属材料内部,使其熔化更加均匀,从而温度更加均匀,试验验证结果符合预期。
受控熔化:指金属按照预先设定的位置、顺序可控地依次熔化。
膨胀缓冲:指对金属固液变化时体积的变化做出缓冲,对于封闭的回路,这种体积变化如果不缓冲,会将管道撑裂。
界面导热:指两个固体表面接触时会有细微的缝隙,这些缝隙里残留的空气会阻碍热量在两个固体表面间传递,因此需要在缝隙中填充热界面材料,如液态金属,这种填充材料的导热能力远高于空气,能够使热量在两个固体表面间以较小的温差进行传递。
本项目是国际上首次采用生物安全性高的低熔点铋基合金,在轨开展液态金属空间热管理关键技术试验验证,相关成果可为未来空间核动力电源、高功率密度航空电子以及民用高功率器件等具有高效传热及散热需求的工程或产业化应用提供关键技术支撑。