新方法可减少真空层压过程中钙钛矿太阳能电池热降解

文摘   2024-11-18 12:26   山东  

目前的光伏(PV)电池板通常包含互连(叠层)的太阳能电池,这些太阳能电池用聚合物封装剂在两块玻璃或带有聚合物背板的玻璃之间用聚合物封装剂真空层压。这种封装方法在硅和薄膜太阳能组件等传统光伏技术中很常见,有助于热管理、机械增强和环境保护,从而实现较长的使用寿命。商业真空层压工艺通常在150 °C下进行,以确保封装剂与玻璃和光伏电池的交联和/或玻璃粘合。众所周知,钙钛矿太阳能电池(PSCs)在热应力下会降解,尤其是在100 °C 以上。

 

NREL 和陶氏化学公司的研究人员研究了层压过程中的降解模式,并在PSCs内开发了内部扩散屏障,以承受真空层压过程中的恶劣热条件。

通过原子层沉积(ALD)在ITO界面和电子传输层SnOX沉积自组装单层的PSCs可以承受商业PV 工艺的典型条件(150 °C)真空层压而没有降解。

在最近的这项工作中,该团队着手弥合创新钙钛矿技术和成熟的PV制造工艺之间的差距,促进PSCs集成到现有的制造基础设施中。该研究系统地探讨了不同层压工艺参数的影响,特别是温度和持续时间,以及PSCs和聚合物封装剂的材料选择。

PSCs中,该团队改变电子传输层(ETL)的空穴传输层(HTL)和缓冲层(BL),以探索真空层压过程中的耐用性。他们确定自组装单层(SAM)HTL材料,如 [2-(9H-咔唑-9-基)乙基]膦酸 (2PACz) 和[2-(3,6-二甲氧基-9H-咔唑-9-基)乙基]膦酸(MeO-PACz) 比聚[双(4-苯基)(2,4,6-三甲基苯基)胺(PTAA) 相比,更耐层压。通过原子层沉积(ALD) 生长的氧化锡(SnOX)比广泛使用的浴铜灵(BCP)作为ETL 缓冲层更耐层压。

科学家们通过研究 PSCs 器件材料和封装剂的不同排列并采用各种表征技术,提出银(Ag) 扩散作为真空封装过程中的主要降解机制。他们证明,SAM HTL与SnOX ETL 缓冲层相结合作为内部扩散屏障,可减轻银扩散,从而促进PSCs在150 °C下的真空层压--这是光伏行业的标准做法。

这项工作表明,钙钛矿光伏可以集成到现有的组件层压工艺中,使未来的单结和多结组件能够使用钙钛矿吸收材料。

原文如下:

Current photovoltaic (PV) panels typically contain interconnected solar cells that are vacuum laminated with a polymer encapsulant between two pieces of glass or glass with a polymer backsheet. This packaging approach is common in conventional photovoltaic technologies such as silicon and thin-film solar modules, contributing to thermal management, mechanical reinforcement, and environmental protection to enable long lifetimes. Commercial vacuum lamination processes typically occur at 150 °C to ensure cross-linking and/or glass bonding of the encapsulant to the glass and PV cells. Perovskite solar cells (PSCs) are known to degrade under thermal stresses, especially at temperatures above 100 °C.



Researchers from NREL and The Dow Chemical Company have examined degradation modes during lamination and developed internal diffusion barriers within the PSC to withstand the harsh thermal conditions of vacuum lamination. 

PSCs with self-assembled monolayers at the ITO interface and SnOX layers deposited by atomic layer deposition at the electron extraction side of the device endured vacuum lamination at conditions typical of commercial PV processes (150 °C) without degradation.

In this recent work, the team set out to bridge the gap between innovative perovskite technology and established PV fabrication processes, facilitating the integration of PSCs into existing manufacturing infrastructures. The research systematically explored the effects of varying lamination process parameters, specifically temperature and duration, as well as the selection of materials for both the PSCs and the polymeric encapsulants. 

In the PSC, the team varied the hole transport layer (HTL) and the buffer layer (BL) for the electron transport layer (ETL) to explore the durability during vacuum lamination. they determined that self-assembled monolayer (SAM) HTL materials such as [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz), and [2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid (MeO-PACz) are more durable to lamination than poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA). Tin oxide (SnOX) grown by atomic layer deposition (ALD) is more robust to lamination than widely used bathocuproine (BCP) as the ETL buffer layer.

The scientists proposed silver (Ag) diffusion as the primary degradation mechanism during vacuum encapsulation by studying different permutations of PSC device materials and encapsulants and employing a variety of characterization techniques. They demonstrated that SAM HTLs coupled with a SnOX ETL buffer layer as an internal diffusion barrier mitigate silver diffusion to facilitate vacuum lamination of PSCs at 150 °C ─ standard practice for the PV industry. 

(消息来源:perovskite-info.com, ACS Applied Energy Materials)

西安浴日光能科技有限公司

电  话:029-81101199

手  机:18009182172(微信号)
邮  箱:marketing@yurisolar.com
网  址:www.yurisolar.com
地  址:陕西省西安市秦创原陕西物联网产业基地C区2号楼    

本微信公众号“钙钛矿材料和器件”所发表内容转载时会注明来源,版权归原出处所有(无法查证版权的或未注明出处的均来源于网络搜集)。转载内容(视频、文章、广告等)只以信息传播为目的,仅供参考,不代表本公众号认同其观点和立场。内容的真实性、准确性和合法性由原作者负责。如涉及侵权,请联系删除,此转载不作为商业用途。


热辐射与微纳光子学
热辐射与微纳光子学
 最新文章