【编委风采】南开大学张雪波教授

文摘   2024-11-12 19:02   辽宁  

 点击蓝字关注并设为星标


张雪波教授简介



张雪波南开大学教授,博导,人工智能学院副院长,机器人与信息自动化研究所所长,天津市智能机器人技术重点实验室副主任,入选国家级青年人才、天津市杰青。中国指挥控制学会智能博弈与兵棋推演专委会副主任、中国自动化学会共融机器人专委会委员、机器人智能专委会委员。
研究方向为机器人自主导航与智能博弈,包括定位建图与场景理解、运动规划与伺服控制、强化学习与智能博弈。承担国家重点研发计划课题、国家自然科学基金重大项目课题、天津市杰出青年科学基金等 20 多项,研发了科考机器人遥操作与自主导航系统、配网带电作业机器人、应急救援机器人,并开展了常态化应用推广。在IEEE汇刊上发表论文 50 多篇,研究成果得到了同行广泛关注和评价,入选全球2%顶尖科学家榜单。获天津市科技进步一等奖,天津市自然科学一等奖和二等奖、吴文俊人工智能自然科学一等奖。研究牵引教学,获宝钢优秀教师奖, 国家级教学成果二等奖、自动化学会教学成果一等奖等。担任《IEEE/ASME Transaction on Mechatronics》等多个国际学术期刊编委、《机器人》青年编委。

课题组实验视频: https://b23.tv/S3mAazw

课题组开源代码:https://github.com/NKU-MobFly-Robotics





学术报告视频


报告题目:旋翼无人机视觉伺服


代表性论文:


1. 低光照场景下基于序列增强的移动机器人人体检测与姿态识别

摘要:灾难救援、地下空间开发利用等场景均存在低光照、甚至完全黑暗的问题,导致机器人目标搜索与识别困难。为此,本文面向低光照场景提出基于红外深度相机图像序列的人体检测和姿态识别方法。首先,利用基于YOLO v4的AlphaPose算法检测人体框和关键点。然后,提出基于特征点匹配的漏检人体框恢复算法,降低人体漏检率,同时使用D-S(Dempster-Shafer)证据理论融合人体框和关键点的检测结果,从而降低人体误检率。最后,设计一种基于图像序列信息的人体姿态分层识别方法,在不同的识别层提取不同的人体躯干特征,利用连续多帧躯干向量特征组成的特征序列对人体姿态进行精准的识别并进行实验验证。实验结果表明本文算法能够在低光照条件下实现准确的人体检测与姿态识别,姿态识别准确率高达95.36%。
引用信息 祝文斌, 苑晶, 朱书豪, 胡天帅, 高远兮, 张雪波. 低光照场景下基于序列增强的移动机器人人体检测与姿态识别[J]. 机器人, 2022, 44(3): 299-309.

识别二维码,访问全文PDF


2. 结构化环境下基于结构单元软编码的3维激光雷达点云描述子

摘要:在同时定位与地图构建(SLAM)系统中,基于3维激光雷达点云数据的闭环检测由于描述子计算困难而极具挑战。为此,本文提出一种结构化环境下可用于闭环检测的基于结构单元软编码的新型3维激光雷达点云描述子。针对3维激光雷达点云的稀疏性和独立性导致的3维空间线段提取困难的问题,首先通过几何滤波的方法提取3维空间中垂直于地面的线段,用于保留3维空间的结构信息;然后,基于线段的空间几何关系构建结构单元集合,并通过软编码技术计算特征向量,作为3维激光雷达点云的描述子;最后,通过两帧点云描述子的匹配实现闭环检测。在KITTI公开数据集和自采数据集上的对比实验,验证了本文方法在时效性和鲁棒性等方面均优于主流的3维激光闭环检测方法。
引用信息 周光召, 苑晶, 高海明, 孙沁璇, 张雪波, 俞诗卓. 结构化环境下基于结构单元软编码的3维激光雷达点云描述子[J]. 机器人, 2020, 42(6): 641-650.

识别二维码,访问全文PDF

3. 基于误差状态卡尔曼滤波估计的旋翼无人机输入饱和控制

摘要:针对GPS(global positioning system)信号缺失环境下无人机自主飞行控制问题,设计了一种基于视觉与IMU(inertial measurement unit)融合的误差状态卡尔曼滤波(ESKF)框架,并在此基础上提出了一种新的输入饱和控制方法以进一步缓解视野约束以及运动模糊问题。不同于传统的扩展卡尔曼滤波(EKF)框架,本文设计的滤波框架是对误差状态进行更新与校正,而不是直接对系统状态进行估计。由于误差状态是小量,并且其线性程度较高,因此相对于系统状态局部线性化而言,误差状态的局部线性化的模型误差更小,进而可以提高状态估计的精度。基于ESKF框架得到的全状态估计,本文提出了一种新的线性与双曲正切混合的饱和函数,进而设计了输入饱和控制器并通过李亚普诺夫函数证明了闭环系统平衡点的渐近稳定性。最后,在旋翼无人机平台上的对比实验结果表明:本文ESKF方法得到的状态估计精度更高。另外,本文所提出的输入饱和控制方法有助于保证视觉特征在视野之内,并且比有界积分控制方法有更好的暂态以及稳态性能。
引用信息:张雪涛, 方勇纯, 张雪波, 蒋静琦, 华和安. 基于误差状态卡尔曼滤波估计的旋翼无人机输入饱和控制[J]. 机器人, 2020, 42(4): 394-405. 

识别二维码,访问全文PDF


4. Q. Bi, X. Zhang, J. Wen, Z. Pan, S. Zhang, R. Wang, J Yuan. CURE: A hierarchical framework for Multi-Robot autonomous exploration inspired by centroids of unknown regions, IEEE Transactions on Automation Science and Engineering, 2024, 21(3): 3773-3786.

通信作者: 张雪波  南开大学

摘要:In this paper, a novel multi-robot autonomous exploration approach CURE is proposed based on dynamic Voronoi diagrams and centroids of unknown connected regions. Compared with existing approaches, the novelty of this work is twofold: 1) Dynamic Voronoi diagram is used for partition of the space being explored to improve the efficiency of multi-robot exploration, and then a new parameter-insensitive utility function is elaborately designed to evaluate the information of centroids, which helps guide the robot to unknown regions. 2) A hierarchical framework consisting of global and local exploration windows for detecting centroids is designed, wherein the global exploration window is activated to find centroids to guide the robot exploration when there are no centroids in any one local exploration window. We validate the feasibility and exploration efficiency of the proposed approach in various complex simulation scenarios and challenging real-world tasks. All test results show that the exploration time consumption and path cost are reduced by up to 50.7% and 34.4%, respectively, compared with an advanced RRT-based multi-robot exploration approach.


5. Z. Song, X. Zhang, T. Li, S. Zhang, Y. Wang, J Yuan. IR-VIO: Illumination-robust visual-inertial odometry based on adaptive weighting algorithm with two-layer confidence maximization, IEEE/ASME Transactions on Mechatronics (T-MECH), 2023, 28(4): 1920-1929.

通信作者: 张雪  南开大学

摘要:Illumination change, image blur, and fast motion dramatically decrease the performance of visual-inertial navigation systems (VINS). This article presents a new illumination-robust visual-inertial odometry (IR-VIO) based on adaptive weighting algorithm with two-layer confidence maximization. First, to prevent the VIO performance degradation caused by poor image quality in complex scenes and ignoring the confidence differences of feature points, we develop a novel adaptive weighting algorithm on the multisensor layer and visual feature layer to better fuse multisensor information and maximize the overall confidence of VIO. Second, to solve the problems of image feature tracking difficulty and excessive image noise in illumination-changing scenes, an image enhancement algorithm is introduced to enhance consecutive images to the same brightness level, while a block noise removal algorithm with constraint protection mechanism is proposed to dynamically remove noise points. Finally, experimental results in the public dataset and real-world environments demonstrate that IR-VIO has superior performance in terms of accuracy and robustness compared with the state-of-the-art methods.


6. J. Wen, X. Zhang, H. Gao, J. Yuan, Y. Fang. E3MoP: efficient motion planning based on heuristic-guided motion primitives pruning and path optimization with sparse-banded structure, IEEE Transactions on Automation Science and Engineering, 2022, 19(4): 2762-2775.

通信作者: 张雪波  南开大学

摘要:To solve the autonomous navigation problem in complex environments, an efficient motion planning approach is newly presented in this paper. Considering the challenges from large-scale, partially unknown complex environments, a three-layer motion planning framework is elaborately designed, including global path planning, local path optimization, and time-optimal velocity planning. Compared with existing approaches, the novelty of this work is twofold: 1) a novel heuristic-guided pruning strategy of motion primitives is proposed and fully integrated into the state lattice-based global path planner to further improve the computational efficiency of graph search, and 2) a new soft-constrained local path optimization approach is proposed, wherein the sparse-banded system structure of the underlying optimization problem is fully exploited to efficiently solve the problem. We validate the safety, smoothness, flexibility, and efficiency of our approach in various complex simulation scenarios and challenging real-world tasks. It is shown that the computational efficiency is improved by 66.21% in the global planning stage and the motion efficiency of the robot is improved by 22.87% compared with the recent quintic Bézier curve-based state space sampling approach. We name the proposed motion planning framework E3MoP, where the number 3 not only means our approach is a three-layer framework but also means the proposed approach is efficient in three stages.


联系我们 :

电话:024-23970050

 E-mail:jqr@sia.cn

网址:https://robot.sia.cn

 

欢迎关注《机器人》视频号

机器人ROBOT
《机器人》是由中国科学院主管,中国科学院沈阳自动化研究所、中国自动化学会共同主办的科技类核心期刊,主要报道中国在机器人学及相关领域具有创新性的、高水平的、有重要意义的学术进展及研究成果。
 最新文章