文献速递|同济大学WR:阴极介导的废水中苯酚到苯醌的电化学转化: 高产率和低能耗

文摘   2025-01-05 00:05   北京  
点击订阅公众号 | 前沿学术成果每日更新

第一作者:Zonglin Li, Zhiyuan Feng

通讯作者:赵红颖 教授

通讯单位:同济大学化学科学与工程学院

DOI:10.1016/j.watres.2024.122967









全文速览

选择性地将废水中的有机污染物转化为高附加值的化学品,是可持续水资源管理的一项大有可为的战略。电化学过程具有精确控制反应途径以获得所需产品的诱人特点,然而,传统的阳极介导过程仍然面临着不可避免地形成羟基自由基(HO-)导致过度氧化的挑战。在此,我们提出了一种通过过一硫酸盐(PMS)活化将苯酚选择性转化为对苯醌(p-BQ)的阴极介导新方法。我们合理设计了一种核壳层状介孔球形铁基碳催化剂(称为 Fe/C-MS)来启动反应,其中由介孔碳组成的第一层壳层为富集 PMS 和苯酚提供了一个封闭的环境,而封装的铁物种的电子构型有利于在 PMS 活化过程中形成高价离子-氧物种(FeIV=O)。值得注意的是,Fe/C-MS 和 PMS 的电化学过程(称为 Fe/C-MS-E/PMS)在 5 分钟内实现了对-BQ 的高产率(80.2%)和 93.7% 的选择性,能耗超低(0.07 千瓦时/摩尔苯酚)。对-BQ 的生产率达到了惊人的 1002.5 %/h,是传统化学和阳极氧化方法的 30-500 倍。通过成功处理实际焦化废水,进一步验证了这种阴极介导工艺的适用性,凸显了其作为一种可持续战略的潜力,可将苯酚选择性地转化为高产能、低能耗的所需产品。本研究中的所有发现促使我们相信,如果设计合理,长期以来被忽视的阴极介导工艺可以作为一种有吸引力的策略,在废水处理过程中实现更可持续的资源回收。








图文摘要







引言

在此,我们提出了一种通过过一硫酸盐(PMS)活化阴极介导的电化学新工艺,用于将苯酚选择性地转化为对苯醌,具有高产率和超低能耗的特点。首先,合理设计了一种核壳结构介孔球形铁基碳电极作为阴极的核心材料。正如预期的那样,由介孔碳组成的壳层可以促进反应物的质量扩散和吸附。此外,在 PMS 活化过程中,表面会聚效应可以调节封装铁物种(Fe3O4@Fe2O3)的电子结构,从而有利于高价离子-氧物种(FeIV=O)的形成。通过理论计算和实验证据,以及一系列操作研究,对 PMS 活化和苯酚转化的机理进行了探究,以确定主要的中间产物和生成的 ROS。此外,还研究了操作参数对苯酚转化和 p-BQ 产量的影响。此外,还通过向实际焦化废水进料证明了该电化学系统的潜力。本研究的所有结果使我们相信,如果设计合理,阴极介导工艺在低能耗的废水资源回收方面具有巨大潜力。





同位素标记技术

图文导读

Fig. 1(a) Schematic illustration of the preparation of Fe/C-MS catalyst. (b) Photography of Fe/C-MS electrodes with 10 cm ×10 cm. (c) TEM and (d) HRTEM images of the Fe/C-MS catalyst. (e) TEM images of selected part in Fe/C-MS and corresponding EDX mapping images for elements. (f) XRD patterns of Fe/C-MS and Fe/CNP. (g) Fe K-edge XANES, inset is enlarged view of the marked region with black square. (h) Valence linear fit curves derived from Fe K-edge XANES spectra, (i) Fourier transform of Fe K-edge EXAFS spectra, and (j) Wavelet transform plots of standard Fe foil, Fe3O4, Fe/C-MS and Fe/CNP.

Fig. 2(a) 57Fe Mössbauer spectra of Fe/C-MS. (b) Percentage of different Fe species. (c) 57Fe Mössbauer spectra of Fe/CNP. (d) Percentage of different Fe species. The electron orbital arrangements of Fe atoms in (e) Fe/C-MS and (f) Fe/CNP. (g) Fe l-edge NEXAFS spectra of Fe/C-MS and Fe/CNP. (h) State density profiles of Fe/C-MS and Fe/CNP.

Fig. 3Performance of (a) Fe/C-MS-E/PMS and (b) Fe/CNP-E/PMS for phenol removal. Experiment conditions: current density = 2.0 mA/cm2, [PMS]0 = 2 mM, [phenol]0 = 100 mg/L. (c) Comparison of different electrochemical processes for the yield of p-BQ per unit time.

Fig. 4The effect of current density on the electrochemical performance for (a) phenol conversion, p-BQ selectivity and (b) p-BQ yield (Experiment conditions: [PMS]0 = 2 mM, [phenol]0 = 100 mg/L). (c) Change in concentrations of ABTS and ABTS•+ in Fe/C-MS-E/PMS system (Experiment conditions: [PMS]0 = 2 mM, [ABTS]0 = 50 μM). (d) UV absorption spectra of generated ABTS•+ in Fe/C-MS-E/PMS system at different current density (Experiment conditions: [PMS]0 = 2 mM, [PBS]0 = 10 mM, [ABTS]0 = 50 μM).

Fig. 5(a) The dual descriptor f in the Fukui function of phenol. (b) Electrostatic potential mapping of phenol. (c) 1H NMR spectra at different reaction times. Experiment conditions: current density = 2.0 mA/cm2, [PMS]0 = 2 mM, [phenol]0 = 100 mg/L.. (d) EPR spectra at different reaction time. Experiment conditions: current density = 2.0 mA/cm2, [PMS]0 = 2 mM, [phenol]0 = 100 mg/L, methanol solution (50 mL). (e) Possible pathways for selective conversion of phenol to p-BQ.

Fig. 6(a) EPR spectra of different reactive species, and (b) PMSO consumption, PMSO2 production with Fe/C-MS and Fe/CNP during PMS activation. (c) Effect of different scavengers on phenol removal in Fe/C-MS-E/PMS and Fe/CNP-E/PMS systems. (d) The MS2 mapping of PMSO2 by isotopic labelling. (e-f) In situ Raman spectra at different reaction times in Fe/C-MS-E/PMS and Fe/CNP-E/PMS systems. Experiment conditions: current density = 2.0 mA/cm2, [PMS]0 = 2 mM, [phenol]0 = 100 mg/L.








研究意义

总之,我们提出了一种阴极介导的电化学氧化工艺,用于将废水中的酚类化合物选择性地转化为高价值化学品。首先,我们设计了一种用于活化 PMS 的核壳结构介孔球形铁基碳电极(称为 Fe/C-MS)。碳层提供了一个独特的封闭环境,以富集 PMS 的浓度,从而改善与封装铁物种的相互作用,进而产生 FeIV=O 以实现苯酚转化。此外,介孔碳外壳还改变了铁的电子特性,特别是与分散在碳纳米板表面的铁/单键氮相比。Fe/C-MS 和 Fe/Csingle bondNP 中铁的电子构型分别为 dxy2dxz1dyz1dz21dx2-y21 和 dxy2dxz2dyz1dz21。Fe/C-MS 中铁的高自旋态(S = 2)更容易失去电子,从而促进 PMS 活化,有利于形成 FeIV=O。不出所料,在 5 分钟内,Fe/C-MS 电极对 p-BQ 的选择性和产率分别达到 93.7% 和 80.2%,明显优于选择性为 30.7% 和产率为 32.9% 的 Fe/Csingle bondNP。DFT 计算进一步证明,Fe/C-MS 更有利于 PMS 的吸附和电子捐赠。此外,共存离子(Na+、Mg2+、Ca2+、Cl-、F-、HCO3-)和溶解的 NOM 对苯酚降解效率的影响非常有限。为了进一步评估 Fe/C-MS-E/PMS 降解实际焦化废水中酚类化合物的潜力,我们采用了中试规模的电化学装置。该系统在 3 小时内的苯酚转化率为 92.6%,p-BQ 产率为 58.4%,能耗为 2.19 KWh/mol。这项研究令人信服地表明,阴极介导的电化学工艺在选择性地将有机污染物高效转化为有价值的化学品方面具有巨大潜力。


文献信息

Zonglin Li, Zhiyuan Feng, Min Chen, Yankai Song, Yicen Dai, Shun Mao, Hongying Zhao, Cathode-mediated electrochemical conversion of phenol to benzoquinone in wastewater: High yield rate and low energy consumption, Water Research, 2025, https://doi.org/10.1016/j.watres.2024.122967



声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!

邮箱:Environ2022@163.com

欢迎大家将《水处理文献速递》加为星标

即时获取前沿学术成果

若有帮助,请点击“在看”分享!


投稿、转载请扫描下方二维码联系小编吧




MOFs帮助环境
推送MOFs基环境功能材料在环境污染控制领域的研究进展。
 最新文章