第一作者:Ling-Wei Wei
通讯作者:刘守恒 特聘教授
通讯单位:国立成功大学环境工程系
DOI:10.1016/j.apcatb.2024.124594
抗生素是公认的新兴污染物,具有不可生物降解、结构复杂、化学能丰富等特点,很难通过传统的废水处理工艺进行处理和能量回收。由 C3N5 和 CuO/Cu2O 双光电电极组成的 Z 型光催化燃料电池(PFC)系统被开发出来,用于同时发电和降解盐酸小檗碱(BH)等抗生素。特别是 C3N5 与 CuO/Cu2O 同步激活过一硫酸盐(PMS)的合适能量势能,从而提高了全氟化碳系统的性能。此外,PMS 与光阴极上的 Cu(I)/Cu(II) 活性位点之间的相互作用可促进 PFC-PMS 系统中高反应物(HRS)的形成,从而提高光催化氧化性能。在可见光照射 120 分钟的条件下,PFC-PMS 系统可以快速有效地氧化 BH(约 99.2%,k = 0.0039 min-1),并同时发电(0.018 mW cm-2)。这种方法为水质净化和能源再利用应用提供了一种前景广阔的方法。
Fig. 1. (a) Schematic illustration of fuel cell with dual-photoelectrode. SEM and TEM images of (b) C3N5 photoanode and (c) CuO/Cu2O photocathode. (c) XRD patterns of C3N5 and CuO/Cu2O. (e) Full-spectrum of C3N5 and CuO/Cu2O, and High-resolution spectra of (f) C 1 s and (g) N 1 s in C3N5 and (h) Cu 2p and (i) O 1 s in CuO/Cu2O.
Fig. 2. (a) UV–vis diffuse reflectance spectra with (b) Tauc plots of the C3N5 and CuO/Cu2O. Mott-Schottky plots of (c) C3N5 photoanode and (d) CuO/Cu2O photocathode. Ultraviolet photoelectron spectroscopy (UPS) spectrum of (e) C3N5 and (f) CuO/Cu2O. (g) Schematic illustration of the charge flow mechanism of the PFC system. (h) TRPL spectra of the C3N5 and CuO/Cu2O.
Fig. 3. Linear sweep voltammetry curves of (a) C3N5 photoanode and (b) CuO/Cu2O and (c) electron-transfer number during ORR by the Kentucky–Levich plots. (d) Electrochemical impedance spectra for PFC and PFC-PMS (frequency range was 10−3 to 106 Hz) under dark or visible-light irradiation. (e) Open-circuit voltage and (f) photocurrent response for C3N5, CuO/Cu2O, PFC and PFC-PMS under visible light irradiation during on and off cycles.
Fig. 4. (a) High-resolution Cu 2p XPS spectra of CuO/Cu2O and (b) the correlation between time-dependent photocatalytic PMS activation and Cu(I)/Cu(II) ratios in the PFC-PMS system. (c) Time-dependent photocatalytic H2O2 and 1O2 generation in the PFC-PMS system. (d) Effect of PMS concentrations on the photocatalytic H2O2 and 1O2 generation in the PFC-PMS system. EPR data for highly reactive species: (e) superoxide radicals (·O2−), (f) hydroxyl radicals (·OH), sulfate radical (·SO4-), and singlet oxygen (1O2).
Fig. 5. (a) Time-dependent photocatalytic oxidation of BH. (b) The pseudo-first-order reaction kinetics for the photocatalytic oxidation of BH. (c) Effect of scavenging agents on the photocatalytic BH oxidation by the PFC-PMS. (d) stability experiments for photocatalytic BH oxidation by the PFC-PMS systems. ([BH] = 20 mg L−1, [Na2SO4] = 0.2 M, [PMS] = 2 mM).
Fig. 6. Effect of (a) initial solution pH, (b) BH concentration ([BH] = 10–40 mg L−1, [Na2SO4] = 0.2 M, [PMS] = 2 mM), and (d) PMS concentrations ([BH] = 10 mg L−1, [Na2SO4] = 0.2 M, [PMS] = 0.25–3 mM) on photocatalytic oxidation of BH using the PFC system. (c) Time-dependent photocatalytic oxidation of BH (10 mg L−1), TC (10 mg L−1), MB (10 mg L−1), and 4-CP (10 mg L−1) by the PFC-PMS system. Current-voltage (j-v) and power density (j-p) plots with (e) organic contaminants and (f) different PMS concentrations in the PFC-PMS system.
研究人员开发了一种由 C3N5 光阳极和 CuO/Cu2O 阴极组成的 Z 型 PFC 系统,以在 PMS 的辅助下提高水净化和功率输出。在可见光照射下,该 PFC-PMS 系统可产生光电压(0.23 V),这是因为光生电子通过外部电路从光电阳极有效地转移到了光电阴极。此外,PFC-PMS 系统还能最大限度地保持氧化还原性能,有效形成 HRS(即 H2O2、-O2-、˙OH、1O2 和˙SO4-),从而提高光催化 BH 氧化能力。更重要的是,在 PFC-PMS 系统中,BH 污染物被用作燃料,与不含有机污染物(0.011 mW cm-2)相比,功率输出提高了(0.018 mW cm-2)。所开发的 PFC-PMS 系统证明了其在能源自给自足的废水处理和能源回收过程中的应用潜力。
Ling-Wei Wei, Shou-Heng Liu, Van-Can Nguyen, Meng-Wei Zheng, Hong Paul Wang, Visible-light driven O2-to-H2O2 synchronized activation of peroxymonosulfate in Z-scheme photocatalytic fuel cell for wastewater purification with power generation, Applied Catalysis B: Environment and Energy, 2025, https://doi.org/10.1016/j.apcatb.2024.124594
声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!
邮箱:Environ2022@163.com
欢迎大家将《水处理文献速递》加为星标
即时获取前沿学术成果
若有帮助,请点击“在看”分享!
投稿、转载请扫描下方二维码联系小编吧