本文要点:
构建用于水净化的具有可控厚度的定向结晶共价有机骨架(COF)膜是非常期望的。在本文中,作者提出了一种简单通用的方案,使用扩散/调节剂双重介导的固-液/气界面合成策略在玻璃容器的内壁上制备高质量的COF膜。
通过仔细控制溶剂和温度,在玻璃壁表面上形成薄的过饱和扩散液体层,并用作培育晶核的受限微反应器。这诱导了苯胺调节的固-液/气界面交换反应和高度有序的COF膜的向上生长。
实验和理论模拟揭示了固-液/气界面成核、生长和结晶的基本机理。利用这一策略,作者创造了13种新型独立亚胺连接COF膜,在结晶度、孔隙率、稳定性、可加工性和吸附容量方面具有优异的性能。
作为应用示范,COF膜填充过滤器与高效液相色谱系统联用,自动去除实际水样中的多目标液晶单体(去除率≥ 96%)。本研究丰富了COF膜的合成工具箱,拓宽了其应用范围。
Figure 1. (A) Illustration of the synthesis process of COF membrane. (B) Constructions of AMCOFs through the various knots and linkers.
Figure 2. (A) Solid-state 13C NMR and (B) FT-IR spectra of AMCOF-1. (C) PXRD pattern of AMCOF-1 and the Pawley refinement applied to it. (D) Top views of the eclipsed AA stacking structure for AMCOF-1. (E) HRTEM image and fast Fourier transform pattern (inset) of AMCOF-1. (F) N2 isotherm at 77 K and pore size distribution (inset) for AMCOF-1. (G-I) SEM images of AMCOF-1 under different magnifications. Inset: (G) photograph and (H, I) structure models.
Figure 3. (A, C) HPLC-MS/MS chromatograms of reaction solutions at different growth stages. The first sample is collected when the reaction temperature reaches 120°C and marked as ''0 min''. Inset: (A) A schematic representation of intermediates. (B) Aniline and BD-CF3 concentrations in reaction solutions over time (at the presence and absence of aniline, by HPLC-UV analysis). (D) PXRD patterns and (E) FT-IR spectra of AMCOF-1 membrane at different growth stages. (F) The schematic diagram of the interfacial reaction process for the formation of AMCOF-1.
Figure 4. PXRD structural analysis of (A) AMCOF-2, (B) AMCOF-3, (C) AMCOF-4, (D) AMCOF-5, (E) AMCOF-6, (F) AMCOF-7, (G) AMCOF-8, (H) AMCOF-9, (I) AMCOF-10, (J) AMCOF-11, (K) AMCOF-12, and (L) AMCOF-13.
Figure 5. (A) Adsorption capacities of 4 fluorinated LCMs by AMCOF-1, AMCOF-2, AMCOF-3, and AMCOF-4, respectively (Langmuir mode). (B) Schematic diagram of the automated removal system. (C) Removal efficiencies to 12 LCMs by AMCOF-1-based membrane filter.
https://doi.org/10.1002/anie.202421555